

Single-step genomic BLUP in multiple breeding populations of Atlantic Salmon

Gebreyohans T. Gebregiwergis, Solomon Antwi Boison, Tesfaye K. Belay, Binyam Sime Dagnachew and Theo Meuwissen

Introduction

Single-step genomic BLUP (SSGBLUP):

- Combine all data from genotyped and ungenotyped animals
- Expected to yield unbiased GEBVs
- In practice, GEBVs from SSGBLUP are usually biased

Introduction...

- Possible causes of biases in GEBVs from SSGBLUP:
 - ✓ The incompatibility between A matrix and G matrix relationships
 - ✓ Disregarding or inappropriate fitting missing pedigrees in genetic evaluations

Introduction ...

- ➤ Missing pedigree are commonly modeled through:
 - ✓ Unknow parent group (UPG)
 - theory well established in PBLUP model (Quaas and Pollak, 1981)
 - Also expanded into SSGBLUP model (Misztal et al., 2013)
 - most suitable model for SSGBLUP remains unknown (Misztal et al., 2020;
 Masuda et al., 2022),
 - ✓ Metafounders, proxy groups representing animals in base populations (Legarra et al., 2015)

Introduction ...

 \triangleright Among the solutions to the incompatibility problem of **A** and **G** relationships

✓ Fernando et al. (2014) proposed to fit a fixed covariate **J** with effect μ_g

$$J_1 = -(A^{11})^{-1}A^{12}J_2$$

Currently no or limited studies have explored the application of these solutions using aquaculture empirical data

Objectives of this study

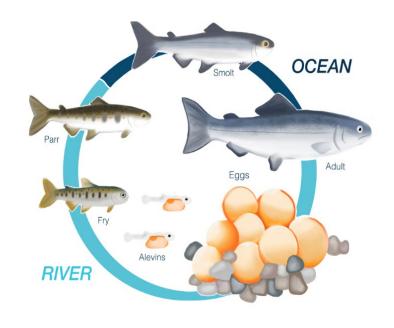
• To compare alternative methods for SSGBLUP in aquaculture breeding schemes for their genetic trend, biases and stability of the breeding values

• To evaluate alternative approaches of fitting **J** factor with genetic groups on biases and stability of SSGBLUP evaluations in Atlantic salmon breeding with multiple population

Materials and Methods

Generations and population structure of Mowi broodstock

	P1	P2	Р3	P4
G0	1997	1998	1999	2000
G1	2001	2002	2003	2004
G2	2005	2006	2007	2008
G3	2009	2010	2011	2012
G4	2013	2014	2015	2016
G5	2017	2018	2019	2020
G6	2021	2022	2023	2024



Life cycle of Atlantic Salmon

https://nunatukavut.ca/kavisilik-conservation/

MM:- Sires of smolt year 2014 (population 2)

2014 sires

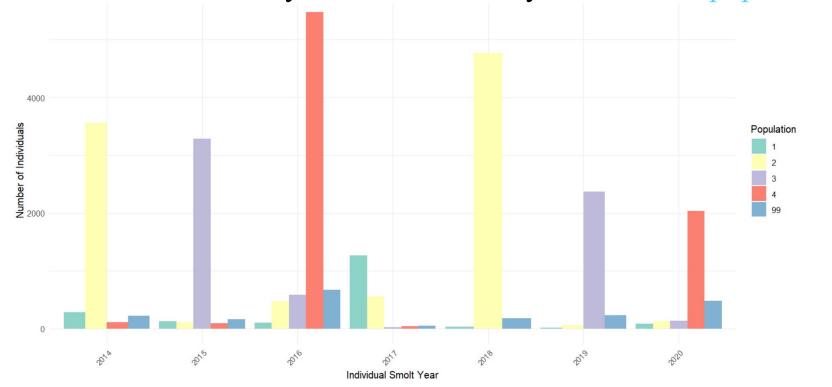
- 2008G= 6 sires, 107 individuals
- 2009G= 16 sires, 278 individuals
- 2010G= 178 sires, 3562 individuals
- 221 individuals with unknown sires

	P1	P2	Р3	P4
G0	1997	1998	1999	2000
G1	2001	2002	2003	2004
G2	2005	2006	2007	2008
G3	2009	2010	2011	2012
G4	2013	2014	2015	2016
G5	2017	2018	2019	2020

There has been crossbreeding among the year classes originating from different population groups

MM:- Individuals smolt years vs their sires population

Number of individuals by individual smolt years and sire population



The populations are not completly genetically separated

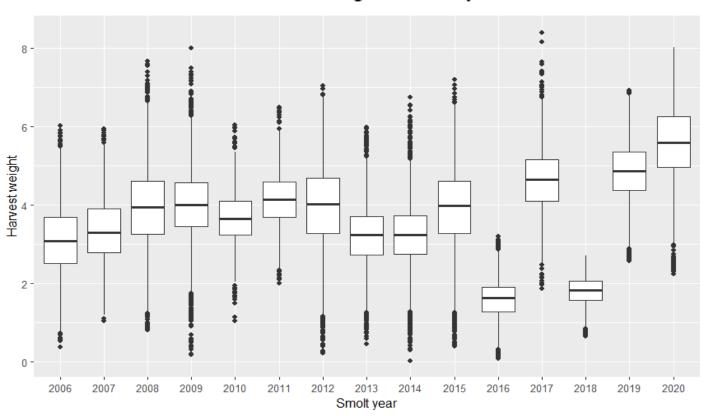
MM:- Phenotype data

➤ Harvest weight > 2005

>475,96 records

Descriptive staistics	Values (in kg)
Mean	3.365
SD	1.41
Min	0.030
Max	8.4

Harvest weight Vs Smolt year



MM:- Pedigree and genotype data

- **≻**Pedigree
 - **✓** 61927 (1996- 2020)
- ➤ Genomic data
 - ✓ Two different SNP chips were used for genotyping
 - \approx 55K SNPs genotyping array (NOFSAL03, Affymetrix axiom array)
 - ≈ 66K SNPs genotyping array (SALMOW1, Affymetrix axiom array)
 - ✓ Imputed to the $\approx 70K$ SNPs chip using FImpute v2.2

(Sargolzaei, Chesnais, & Schenkel, 2014)

MM:- Phenotype and genotype data

Smolt years with genotypes and/or Phenotypes data

	P1	P2	P3	P4	
G0	1997	1998	1999	2000	→ No phenotype
G1	2001	2002	2003	2004	1 • 1
G2	2005	2006	2007	2008	
G3	2009	2010	2011	2012	phenotype
G4	2013	2014	2015	2016	Genotype
G5	2017	2018	2019	2020	+ phenotype

MM:- Creating groups

- Four groups
 - ✓4 population
- >Twenty groups
 - ✓ Smolt year having 50 individuals or more with unknow parents
- ➤ Ten groups
 - ✓4 population
 - ✓2016 (4 groups using PCA)
 - ✓2015 (2 groups using PCA)

MM:- SSGBLUP Models

Y=Xb+Zu+Z(m)+e, where m is model options

#	Model name	Description
1	SSGBLUP	A model without genetic group and J
2	SSGBLUPGA*	J was fitted as random variable via G modification
3	SSGBLUPJ	J was fitted as a fixed covariate
4	SSGBLUPQ	Q-group was fitted as a fixed covariate
5	SSGBLUPQJ	Q and J fitted in the model as fixed covariates
6	SSGBLUPQGA	\mathbf{Q} was fitted as fixed covariates with random \mathbf{J}

PBLUP/PBLUPQ

*G modification= $\mathbf{G} + \mathbf{11'}\alpha$ (Vitezica et al., 2011)

MM:- Model performance evaluation

- > 5 fold cross-validation used
 - ✓ In each cross-validation aproximatly 2400 phenotypes randomly masked
 - ✓ In total 11996 phenotypes masked

MM:- Validation parameter (Legarra and Reverter regression)

- >Level-bias
 - ✓ The difference in means between the $GEBV_{CV}$ and $GEBV_{all}$ scaled by the genetic standard deviation of the trait
- **≻**Inflation
 - ✓ The regression of GEBV_{all} on GEBV_{CV}

- > Ratio of accuracies
 - ✓ The correlation between GEBV_{CV} and GEBV_{all}

(Legarra and Reverter, 2018)

Results:- Evaluation of the different prediction models without groups

Models	Inflation	Bias	Ratio of accuracies
SSGBLUPb	1.006	0.001	0.960
SSGBLUPGA	1.008	0.008	0.959
SSGBLUPJ	1.008	0.010	0.958
PBLUP	0.987	0.034	0.837

All models were without groups

Results - Level bias

Model		Number of	Number of UPG		
	0	4	10	20	
SSGBLUP _b	0.001	0.002	0.007	0.006	
SSGBLUPGA	0.008	0.012	0.017	0.023	
SSGBLUPJ	0.010	0.015	0.020	0.039	
PBLUP	0.034	0.046	0.031	0.008	

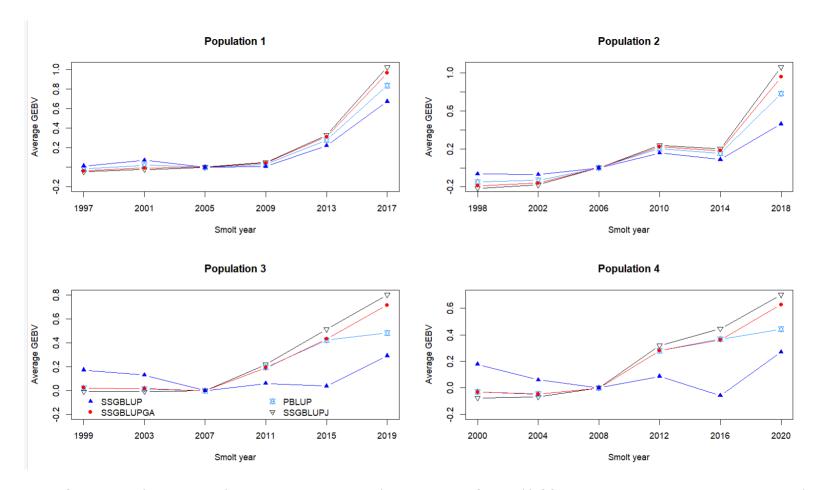
Results – Ratio of accuracies

Model		Number of	Number of UPG		
	0	4	10	20	
SSGBLUP _b	0.960	0.958	0.957	0.955	
SSGBLUPGA	0.959	0.960	0.959	0.958	
SSGBLUPJ	0.958	0.961	0.959	0.960	
PBLUP	0.837	0.843	0.840	0.840	

Results – Inflation

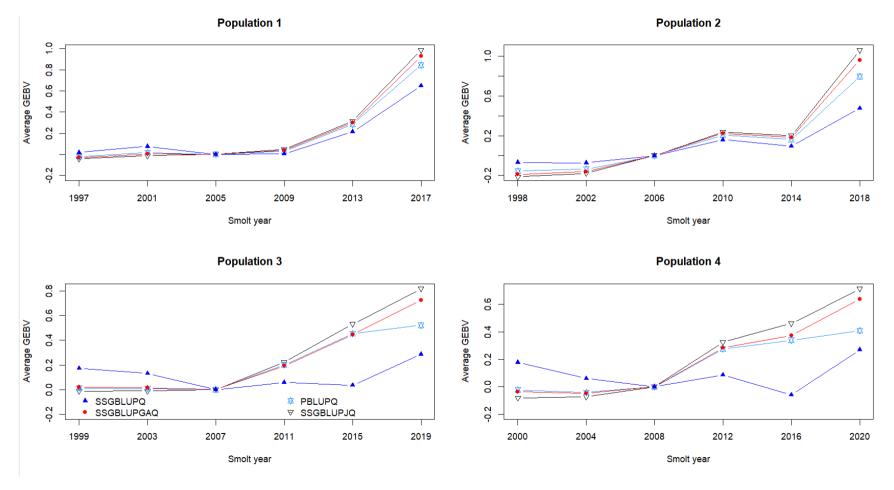
Model		Number of	Number of UPG		
	0	4	10	20	
SSGBLUP _b	1.006	1.004	1.005	1.006	
SSGBLUPGA	1.008	1.005	1.006	1.005	
SSGBLUPJ	1.008	1.005	1.005	1.004	
PBLUP	0.987	0.980	0.980	1.005	

Results:- Genetic trend plot across smolt years



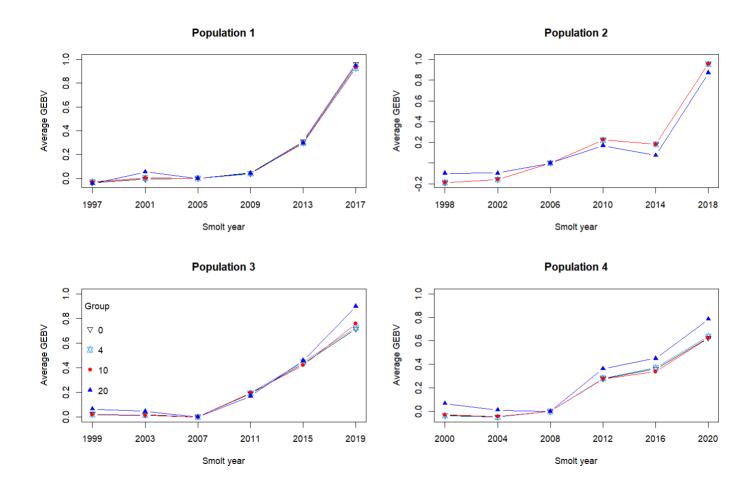
Estimate of genetic trends across smolt years for different SSGBLUP models without UPG

Results :- Genetic trend plot across smolt years



Estimate of genetic trends across smolt years for different SSGBLUP models with 4 UPG

Results:- Genetic trend plot across smolt years



SSGBLUPGA prediction method and with different groups

Take home messages

- Incorporating J factors into SSGBLUP models, whether as random or fixed covariates
 - ✓ Enables the estimation of genetic trends across generations
 - ✓ A marginal improvement in ratio of accuracies and maintains low inflation biases
 - ✓ Slightly increased the level-bias
- Implicit incorporation of the J factor as a random covariate (Vitezica et al.,
 2011) reduced level biases when compared to fitting J factor as fixed covariate effects

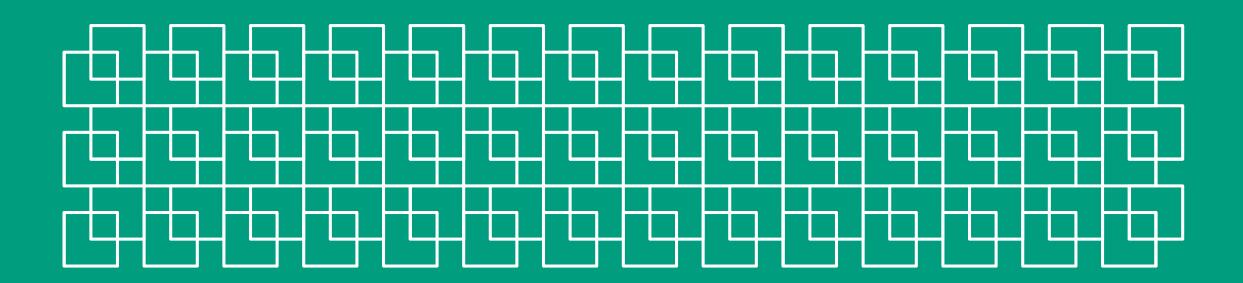
Take home messages

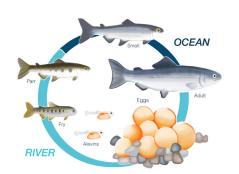
- Genetic groups
 - ✓ Inflation biases slightly lower with group than with out group
 - ✓ Highest ratio of accuracies was obtained with 4 genetic groups in models with **J** factor
 - ✓ level-biases tend to increase as the number of genetic groups increased

Acknowledgements

- ✓ All co-authors
- ✓ The Norwegian Research Council (project no 321539) for financial support

Thank you





Summary

Available data

Harvest weight

Multi-generation

Multi-population

Genotype (yes/no)

Parents information (yes/no)

Prediction models

SSGBLUP

SSGBLUP + J factor

SSGBLUP + groups

SSGBLUP + **J** factor+groups

Evaluation criteria

Inflations

Biases

Accuracies

Genetic trends

Which prediction models perform better???

MM:- Phenotype and genotype data

Summary of the number of records with both phenotype and genotype

Population	Phenotype	Genotype (smolt year)	Both
1	8770	1866 (2017)	1866
2	12549	4845 (2018)	4845
3	11568	6317 (2015+2019)	6079
4	14709	9871 (2016+2020)	9543
Total	47596	22899	22333