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Genomic prediction
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Motivation and Aim

Motivation:

" GBLUP gives SNP and QTL same
weight

" Machine learning (ML) models
can do feature selection

Aim:

Investigate benefit of including
QTL genotypes in ML and GBLUP
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Simulation
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Simulation
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Models

" GBLUP
- SNP and QTL are mixed (u) y=1pu+Zu+e
= 2GBLUP
- SNP (uq) and QTL (u,) are separated y=1u+Zuy; + Zu, + e

" Machine learning models:
Random Forest (RF), Support Vector Regression (SVR)

- SNP and QTL are mixed
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Results-Prediction Accuracy

Prediction accuracy
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Results-2GBLUP
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Results-Weighted 2GBLUP
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Results-overfitting of RF
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Influence of feature numbers

Genetic effect only
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Take-home message

" (weighted) 2GBLUP can benefit from including QTL
" RF and SVR did not benefit from including QTL

® Random forest performed poorly:
e overfitting

e may work when few QTL explain most of genetic variance
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