intagt one quality

Agroecological transition may reduce the fat content of Fourme de Montbrison cheese

M. COPPA¹, V. Breton², M. Chabrut², A Passel² and B. Martin³

¹Department of Agricultural, Forest and Food Sciences, University of Turin, Italy

³Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, France

² Syndicat de la Fourme de Montbrison AOP, France

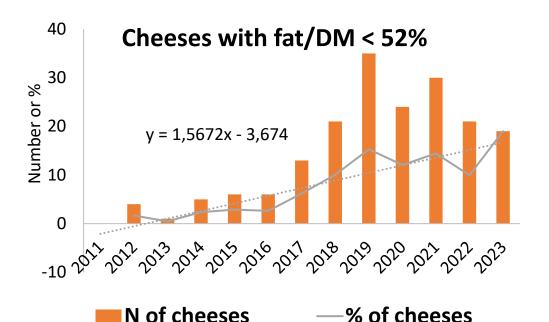
PDO Fourme de Montbrison

Blue type cheese made with pasteurised or raw (38%) milk

- 58 farmers
- 7 dairies
- 690 tons/year

PDO specification:

52% min fat/DM (very high!)



Fourme de Montbrison » PDO system

- Historically based on Holstein breed and maize silage as forage base
- Agroecological transition ongoing since 2011 (national demand):
 - maximisation of grazing
 - shift from Holstein to **Montbélierde** breed (Ho form 56% in '90 to 26% in 2023)

Problem:

→ Decrease of cheese fat/DM content; since 2018 > 10% of non conformities, mainly during the grazing season

MIA

- 1 Fat/DM is mainly function of milk fat to protein ratio (PFR)
- → Identify farming practices at the origin of the low milk FPR

- 2 Test possible solutions to increase fat/DM cheese content
- → Living lab approach

Materials and Methods

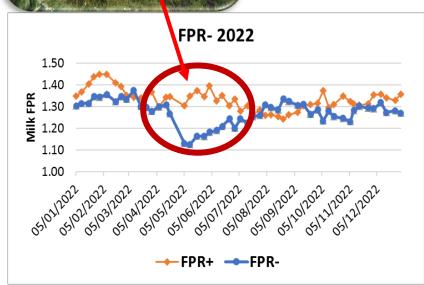
Experimental design

Farm FPR Profiling

1 – collection and analysis of the FPR of bulk milk of all the farm associated to PDO Fourme de Montbrison

2 – Identification of **20 farms**

With **low FPR** during grazing **(FPR-)**


With high FPR all year round (FPR+)

3 – **Milk and herbage sampling** at the beginning of the grazing season (P1) and 1.5 months later (P2)

- 4 Milk composition (fat, protein, urea, etc) and herbage nutritive value analysis
- 5 **Survey** on global farming practices + **detailed practices** in P1 and P2 (grazing in particular)

Results

Global farming practices (Anova)

Small differences in feeding systems:

More humid forages in FPR+

→ faster transition to pasture

Item	FPR-	FPR+	SEM	Significance
Winter cow diet (% diet DM)				
Grass silage	17	41	23.3	*
Maize silage	2	12	9.8	*
Summer cow diet (%diet DM)				
Grass silage	0	12	2.8	*
Hay	11	3	1.8	*
Grazing transition speed				
N of 1/2 day grazing before full grazing	10	5	6.5	†
Duration of a grazing cycle (day)	19	26	7.9	†

Shorter grazing cycles in FPR- → more intensive rotational grazing??

Results

Sampling days farming practices
(Mixed model: group fixed, period repeated, interaction)

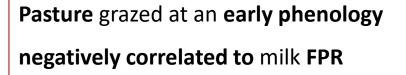
FPR-: higher OMd, CP, MFU and lower ADF

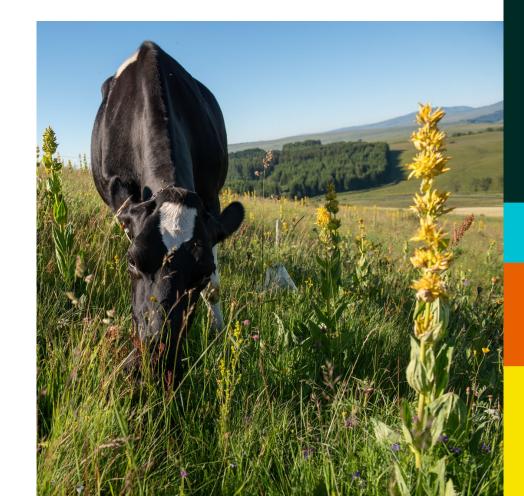
→ pasture grazed at an earlier phenology,

Confirmation of intensive rotational grazing

lt aus	EDD	FPR+	SEM	Significance	
Item	FPR-			FPR group	Period
Pasture caractheristics	1				
Milk Forage Units (N)	0.94	0.89	0.012	**	ns
OMd (%)	75.3	71.9	0.86	**	ns
ADF (g/kg DM)	256	277	7.1	*	ns
CP (g/kg DM)	200	174	7.3	*	+
Milk composition					
Fat (g/kg)	39.4	42.0	0.461	***	*
Protein (g/kg)	33.5	32.8	0.309	†	*
FPR	1.18	1.28	0.017	***	ns
Urea (g/L)	308	276	12.95	+	+

FPR-: less fiber \rightarrow less fat in milk \rightarrow lower FPR




Results

Sampling days farming practices

Significant Pearson's correlation	Milk fat	Milk protein	FPR
Pasture caractheristics			
Milk Forage Units (N)	-0.38		-0.40
OMd (%)	-0.42		-0.38
ADF (g/kg DM)	0.40		0.40
Bypass Protein (g/kg DM)		0.38	-0.35
Proportion of Holstein breed (%)		-0.57	0.33

Holstein Breed **positively correlated to** milk **FPR**

Living Lab

Origin of the problem:

Intensive and early rotational gazing \rightarrow lack of fiber in cow diet \rightarrow less VFA in the rumen \rightarrow Lower fat synthesis

Discussion with farmers:

8 farmers with and without FPR problem + PDO association managers

Pos	sible solution	Application contraint		
1	Late/extensive grazing	Loss of milk yield (€)		
2	Hay integration at pasture	Too small and fragmented plots: need to move continuously the trough		
3	Change concentrate type rapid → slowly degradable starch	NONE: Tested solution		
	(maize flour vs corn cob silage)			
		VS		

Living Lab

Test:

- 4 FPR- farms changing form maize flour to corn cob silage vs 4 FPR- farms keeping maize flour
- Milk composition (fat, protein, urea, etc.) and herbage nutritive value analysis at the beginning of the grazing season (P1) and 1 months later (P2)
- Survey of detailed farming practices

Results:

(Mixed model: group fixed, period repeated, interaction)

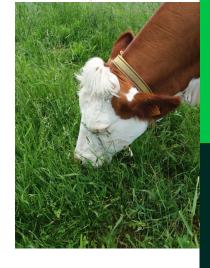
• No differences in farming practices, milk or herbage composition between FPR- flour vs FPR- cob silage farms

Conclusion

Agroecological transition:

maximisation of grazing and shift from Holstein to Montbélierde breed

Intensive rotational grazing to keep milk yield


• Lack of fiber at the beginning of grazing season → less milk fat and low FPR

High frequency of cheeses with Fat/DM < 52% in spring

Solution ??

- Late/extensive grazing Loss of milk production
- Modification of PDO cheese specifications (lower Fat/DM)

Thank you for your attention

mauro.coppa@unito.it

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON
2020 RESEARCH AND INNOVATION PROGRAMME LINDER GRANT AGREEMENT Nº 10100025

Project Co-coordinator: Cécile Berri - INRAE E-mail: cecile.berri@inrae.fr

Communication Officer: Dina Lopes - CONSULAI
E-mail: dlopes@consulai.com

www.intaqt.eu

