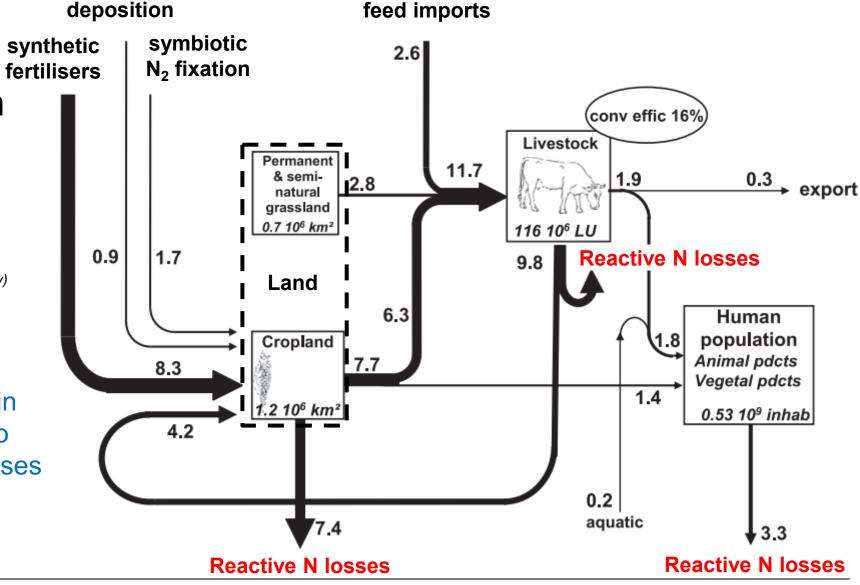
Ways to achieve protein autonomy in cattle feeding

F. Schori¹, I. Morel¹, T. Haak², O. Huguenin-Elie³

- ¹ Ruminant Nutrition and Emissions, Agroscope, Tioleyre 4, 1725 Posieux, Switzerland
- ² Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
- ³ Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland

EAAP, 4.9.2024, Florence

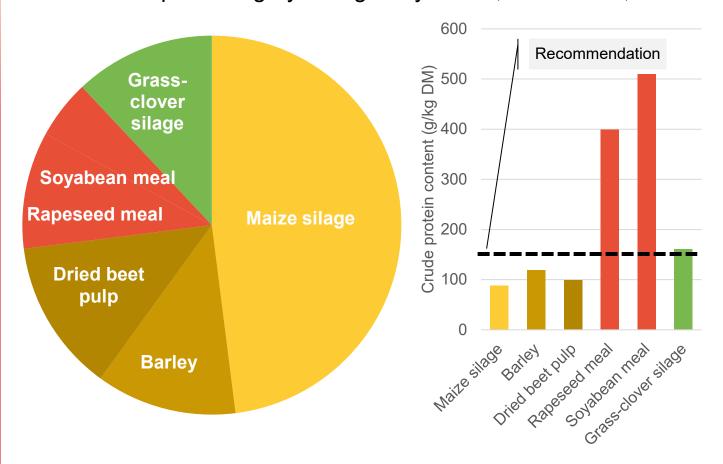

N transfers through the agro-food

2009 (TgN/yr)

(adapted from Billen et al., 2014, Global Food Security)

system in Europe

The aim of increasing protein autonomy in cattle diets is to reduce reactive nitrogen losses and promote a circular production.



atmospheric

Ways to increase protein autonomy in cattle diets

Ration example for high yielding dairy cows (% DM; GfE, 2023)

Ways for protein autonomy

- Reduce protein content (overfeeding)
- Increase herbage share in the diet
- Increase the protein content of herbagebased feeds in low-herbage diets
 - Prioritise fresh over preserved herbage
 - · Increase grazing or earlier use
 - Optimise the share of forage legumes in leys
- Increase home-grown grain legumes
- Feed additives (amino acids)
- Heat treatment of proteins
- Selection of efficient cattle

Low protein rations for dairy cows

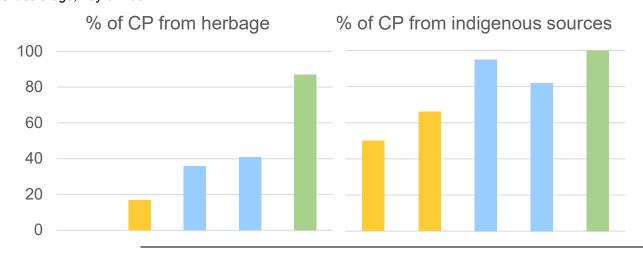
	Control	Reduced	$P^{\#}$
Ration crude protein (g/kg)	148	133	
Ratio CP/NEL (g/MJ)	24	22	
Total intake (kg DM)	23.4	21.8	**
Energy corrected milk (kg ECM)	35.1	32.3	*
Milk urea (mg/dl)	20	14	***
Nitrogen use efficiency	0.33	0.34	
Urinary N excretion (g/d)	170	119	***
Methane production (g/d)	481	474	
Methane intensity (g/kg ECM)	13.7	14.8	*

- Per treatment 15 mid-lactation Holstein cows
- Control: covers CP and APDE

 (absorbable protein at the duodenum when energy limits microbial protein synthesis in the rumen)
- Reduced: covers CP
- Total mixed ration:
 - Maize silage (36 %),
 - Hay (29 %),
 - Grass-clover silage (23 %),
 - Energy and protein concentrate (11 %)
 - Minerals (1 %)
- Greenfeed bait feed

(Schori et al., in preparation)

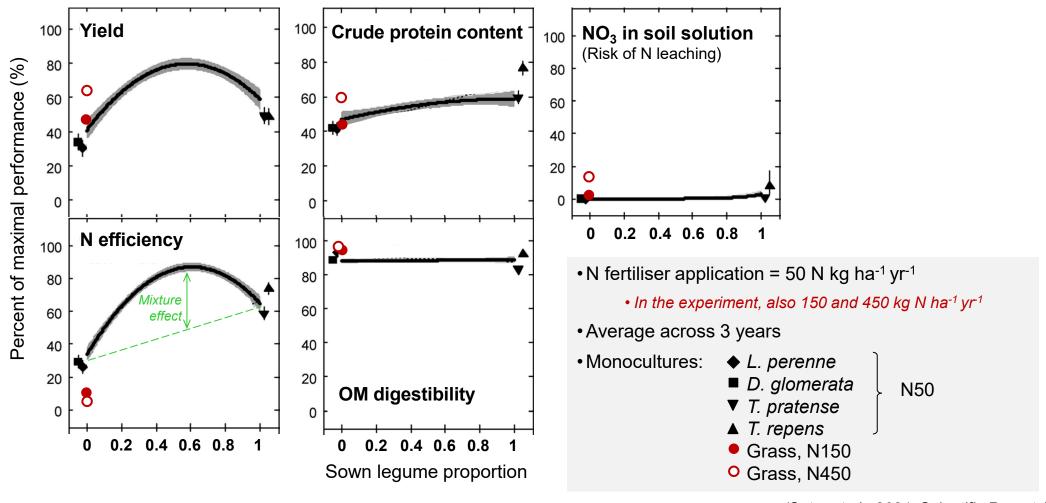
Dairy cows needed a balanced diet according to official feeding recommendations to produce milk sustainably and to stay healthy.


^{*}P-value: * < 0.05, ** < 0.01, and *** < 0.001

C

More herbage-based feeds for fattening cattle

	Maize-rich	Intermediate	Herbage- rich	
Maize silage %	60 – 70	35 – 40	0 – 10	
Herbage %	0 – 15	30 – 35	85 – 90	
Concentrate %	20 – 30	20 – 30	0 – 5	
Main CP source	Soyabean meal, maize gluten & rapeseed meal	Herbage products, peas or lupin grains	Herbage prod.	
NEV & CP per DM	7.4 MJ 7.4 MJ 140 g 148 g	7.4 MJ 7.2 MJ 171 g 161 g	6.1 MJ 146 g	


ADG = Average daily gain, CP = Crude protein, NEV = Net energy for meat production, Herbage = Grass silage, hay or fresh

- Indigenous protein sources, most of which from herbage products, can cover protein requirements.
- The combined use of herbage products and grain legumes as protein sources enables high growth performances.
- The nitrogen use efficiency (ADG/CPi) decreases with an increased proportion of indigenous protein sources (protein quality).

Optimise the share of forage legumes in leys

(Suter et al., 2021; Scientific Reports)

V

Pasture management

	Low	High	P#
	PreHM	PreHM	P''
PreHM (kg DM/ha over 5 cm)	589	2288	***
PostHM (kg DM/ha over 5 cm)	150	200	***
Nutritive value of herbage			
Crude protein (g/kg DM)	240	184	**
Acid detergent fibre (g/kg DM)	188	218	*
Herbage NEL (MJ/kg DM)	6.6	6.3	***
Herbage intake (kg DM/d)	15.6	15.0	
Energy corrected milk (kg/d)	26.6	24.1	*
Nitrogen use efficiency§	0.24	0.27	-

^{*}P-value: * < 0.05, ** < 0.01 and *** < 0.001

- Per treatment 12 late mid-lactation Holstein cows
- Low pre-grazing herbage mass (low PreHM)
- **High pre-grazing herbage mass** (high PreHM)
- Similar herbage allowance 22 kg DM/d/cow.
- Full grazing, minerals and NaCl

(Rombach et al., 2023; J. Anim. Physiol. Anim. Nutr.)

Optimised grazing management can increase the protein and energy content of the herbage.

[§]Calculated based on the average values per group

Even low protein forages can be introduced

			Maize	
		Maize	silage &	
	Pasture	silage	protein	P [#]
Diet crude protein content (g/kg DM)	199	147	179	***
Herbage intake (kg DM/d)	13.3	9.9	9.6	***
Total intake (kg DM/d)	13.3	16.7	16.6	***
Energy-corrected milk (kg/d)	21.3	23.8	25.8	***
Nitrogen use efficiency	0.26	0.31	0.28	***

*P-value: * < 0.05, ** < 0.01, and *** < 0.001

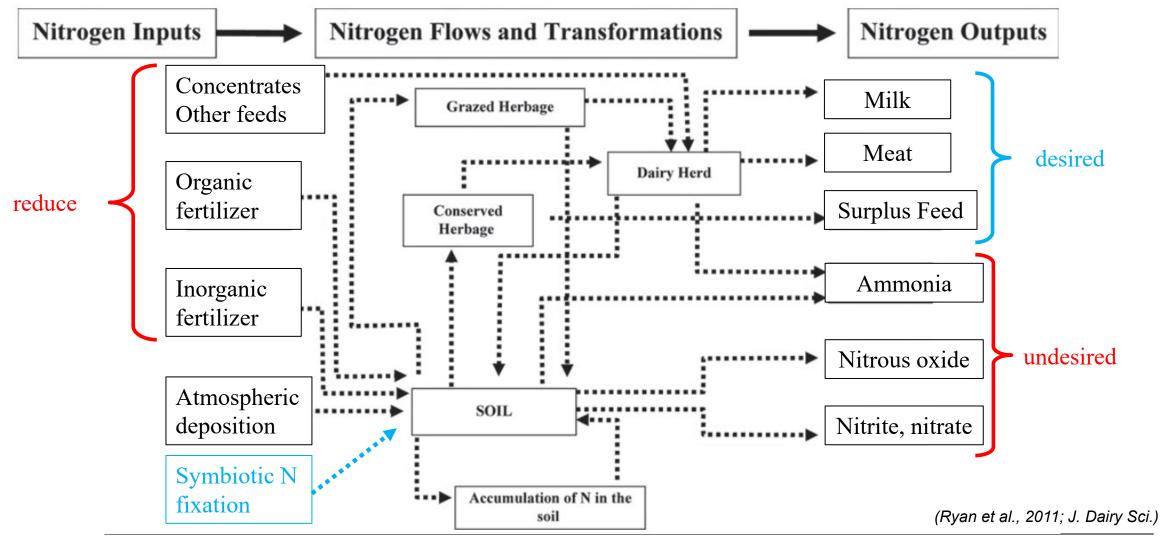
- A total of 18 Holstein cows in midlactation
- 3 x 3 Latin square
- Pasture
- Maize silage = pasture & whole plant maize silage
- Maize silage & protein = pasture & whole plant maize silage (82%) & protein concentrate (18%)
- Composition of the protein concentrate: soybean meal (60 %), maize gluten (25%), potato protein (10%) and dried sugar beet pulp (5%)

(Rombach et al., 2024; J. Anim. Physiol. Anim. Nutr.)

- Even a low protein forages like maize silage can be introduced.
- For diets with maize silage: Protein in excess of requirements or protein quality may be responsible for further increases in milk yield.

Conclusions

- There are many different ways to increase or achieve protein autonomy in cattle feeding.
 - ↓ protein overfeeding
 - ↑ proportion of herbage in the diet
 - ↑ protein content in herbage (mixed swards with legumes, earlier use in low-grass diets, prioritise fresh herbage)
 - ↑ home grown grain legumes
 - feed additives (amino acids)
 - treatments of protein-rich feedstuffs (heat)
 - selection of efficient cattle
 - •
- All these measures have different impacts on different environmental metrics, productivity, and product quality, which need to be weighed up.



V

N flows within a grass-based dairy system

Yield	20.0 t ha ⁻¹ yr ⁻¹	GraLeg N450 Yr2
N efficiency ($N_{yield}/N_{applied}$)	10.5	GraLeg N50 Yr2
Crude protein content	322 g kg ⁻¹ DM	Leg N450 Yr2
OM digestibility	671 g kg ⁻¹ DM	Gra N50 Yr2
NO3 in soil solution	75.3 mg N liter ¹	Leg N450 Yr3