



An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Introduction

- Nitrogen emissions from grazing dairy cows can lead to reduced water and air quality, as well as increased Green House Gas (GHG) emissions
- The European Green Deal and Farm to Fork Strategy has set a target for ≥ 50% reduction in nutrient loss by 2030
- Agricultural emissions account for 38% of total GHG emissions
- Agriculture decreases water quality via chemical and organic (manure and urine from livestock) fertilizer (NO₃-)
- EU Nitrates Directive (91/676/EEC) → National NAPs

Introduction

- o Irish NAP :
- Manure management
- > Pasture management
- Grazed grass = 75-90% of DMI in summer
- Concentrate supplements
- Lactating dairy cows require 15-17% CP
- Grazed grass CP varies across seasons with ca. 18% CP in summer

Objectives and Hypotheses

- ➤ The objectives of this experiment were to investigate the effects of;
- 1) decreasing the concentrate supplement CP%...
- 2) including rumen-protected amino acids in low CP feeds.. on milk production in lactating, grazing dairy cows
- HA₁: Decreasing the the lactating grazing
- HA₂: The addition of concentrate feed, make dairy cows

ed supplemented to milk production

acids to a low CP of lactating grazing

Mid-Lactation Experimental Design

- 2-wk covariate period followed by 8-wk experimental period
- Conducted from late June 2023 early September 2023
- 100 Holstein Friesian dairy cows
 - n = 25 per treatment x 4 dietary treatments
 - Spring calving, 24% were 1st lactation cows,134 DIM
 - 530 kg BW and 3 BCS
 - Mean EBI €222
 - Daily milk production yields at randomisation:

 - 23 kg daily milk
 1.85 kg milk solids
 - 1.05 kg fat

0.80 kg protein

Treatments

1.79 kg of DM per day

17% CP kg⁻¹ of DM (H)

13% CP kg⁻¹ of DM (M)

9.5% CP kg⁻¹ of DM (L)

9.5% CP kg⁻¹ of DM containing rumen-protected methionine and lysine (L-AA)

Grazing Management

- Predominantly perennial ryegrass (Lolium Perenne L.) swards
- Weekly visual assessments of farm herbage cover were conducted and recorded
- Pre-grazing herbage mass quantified for paddocks to be grazed
- 24-36-hr residency time or post-grazing compressed sward height ranging from 4 to 4.5 cm

(O'Donovan et al., 2002; Kennedy et al., 2009; Wims et al., 2014; Hanrahan et al., 2017)

Milk Data Collection

• Individual milk yields (kg) were recorded

 Successive Monday p.m. and Tuesday a.m. milk samples were taken

• Milk solids yield = kg fat + kg protein

Items	Н	М	L	L-AA	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	20.2 ^{ab}	20.4ª	20.0 ^{ab}	19.7 ^b	0.17	0.04
Fat, %	4.82 ^a	4.95 ^a	4.65 ^b	4.95 ^a	0.04	< 0.001
Protein, %	3.84 ^{ab}	3.88 ^{ab}	3.81 ^b	3.91 ^a	0.02	< 0.01
Fat, kg d ⁻¹	0.96 ^b	1.00 ^a	0.92^{c}	0.97 ^{ab}	0.01	< 0.001
Protein, kg d ⁻¹	0.77 ^{ab}	0.79 ^a	0.76 ^b	0.77 ^{ab}	< 0.01	0.04
Milk solids, kg d ⁻¹	1.73 ^{ab}	1.79 ^a	1.68 ^b	1.74 ^{ab}	0.02	< 0.001

¹Dietary treatments were concentrates supplemented to pasture, differing in CP with concentrations of; 17% CP (H); 13% CP (M); 9.5% CP (L); and a 9.5% CP containing rumen-protected Met and Lys (L-AA)

Items	Н	M	L	L-AA	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	20.2ab	20.4a	20.0 ^{ab}	19.7 ^b	0.17	0.04
Fat, %	4.82 ^a	4.95a	4.65b	4.95a	0.04	< 0.001
Protein, %	3.84 ^{ab}	3.88 ^{ab}	3.81 ^b	3.91 ^a	0.02	< 0.01
Fat, kg d ⁻¹	0.96 ^b	1.00 ^a	0.92 ^c	0.97 ^{ab}	0.01	< 0.001
Protein, kg d ⁻¹	0.77 ^{ab}	0.79 ^a	0.76 ^b	0.77 ^{ab}	< 0.01	0.04
Milk solids, kg d ⁻¹	1.73 ^{ab}	1.79 ^a	1.68 ^b	1.74 ^{ab}	0.02	< 0.001

¹Dietary treatments were concentrates supplemented to pasture, differing in CP with concentrations of; 17% CP (H); 13% CP (M); 9.5% CP (L); and a 9.5% CP containing rumen-protected Met and Lys (L-AA)

Items	Н	M	L	L-AA	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	20.2ab	20.4a	20.0ab	19.7 ^b	0.17	0.04
Fat, %	4.82a	4.95 ^a	4.65 ^b	(4.95 ^a)	0.04	< 0.001
Protein, %		3.88 ^{ab}		3.91 ^a	0.02	< 0.01
Fat, kg d ⁻¹	0.96 ^b	1.00 ^a	0.92 ^c	0.97 ^{ab}	0.01	< 0.001
Protein, kg d ⁻¹	0.77 ^{ab}	0.79 ^a	0.76 ^b	0.77 ^{ab}	< 0.01	0.04
Milk solids, kg d ⁻¹	1.73 ^{ab}	1.79 ^a	1.68 ^b	1.74 ^{ab}	0.02	< 0.001

¹Dietary treatments were concentrates supplemented to pasture, differing in CP with concentrations of; 17% CP (H); 13% CP (M); 9.5% CP (L); and a 9.5% CP containing rumen-protected Met and Lys (L-AA)

Items	Н	M	L	L-AA	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	20.2ab	20.4a	20.0ab	19.7 ^b	0.17	0.04
Fat, %	4.82 ^a	4.95 ^a	4.65 ^b	4.95 ^a	0.04	< 0.001
Protein, %	3.84 ^{ab}	3.88 ^{ab}	3.81 ^b	(3.91 ^a)	0.02	< 0.01
Fat, kg d ⁻¹	0.96 ^b	1.00 ^a	0.92 ^c	0.97 ^{ab}	0.01	< 0.001
Protein, kg d ⁻¹	0.77 ^{ab}	0.79 ^a	0.76 ^b	0.77 ^{ab}	< 0.01	0.04
Milk solids, kg d ⁻¹	1.73 ^{ab}	1.79 ^a	1.68 ^b	1.74 ^{ab}	0.02	< 0.001

¹Dietary treatments were concentrates supplemented to pasture, differing in CP with concentrations of; 17% CP (H); 13% CP (M); 9.5% CP (L); and a 9.5% CP containing rumen-protected Met and Lys (L-AA)

Items	Н	М	L	L-AA	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	20.2ab	20.4a	20.0ab	19.7 ^b	0.17	0.04
Fat, %	4.82 ^a	4.95 ^a	4.65b	4.95 ^a	0.04	< 0.001
Protein, %	3.84 ^{ab}	3.88 ^{ab}	3.81 ^b	3.91 ^a	0.02	< 0.01
Fat, kg d ⁻¹	0.96 ^b	1.00 ^a	0.92 ^c	0.97 ^{ab}	0.01	< 0.001
Protein, kg d ⁻¹	0.77 ^{ab}	0.79 ^a	0.76 ^b	0.77 ^{ab}	< 0.01	0.04
Milk solids, kg d ⁻¹	1.73 ^{ab}	1.79 ^a	1.68 ^b	1.74 ^{ab}	0.02	< 0.001

¹Dietary treatments were concentrates supplemented to pasture, differing in CP with concentrations of; 17% CP (H); 13% CP (M); 9.5% CP (L); and a 9.5% CP containing rumen-protected Met and Lys (L-AA)

Conclusion

On a DM. basis

Recommended maximum of 17% CP is possible

 Reduce concentrate CP to 13% for mid-lactation, grazing dairy cows

 Reducing to 9.5% with rumen-protected Met and Lys has additional considerations...

