Effect of dietary forage proportion and crossbreeding on dairy cows' feeding efficiency and methane emissions

Sabrina Ormston^a, Tianhai Yan^{b*}, Xianjiang Chen^b, Alan W. Gordon^c, Katerina Theodoridou^d, Sharon Huws^d, Sokratis Stergiadis^{a*}.

^aUniversity of Reading, United Kingdom. ^bAgri-Food and Biosciences Institute, United Kingdom. ^c Agri-Food and Biosciences Institute, Statistical Services, United Kingdom. ^dQueen's University Belfast, United Kingdom.

Feeding dairy cows

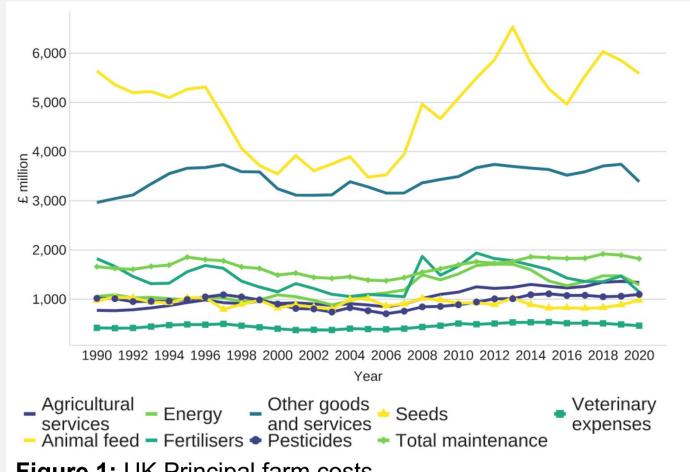


Figure 1: UK Principal farm costs

DEFRA, (2023) United Kingdom Food Security Report 2021: Theme 2: UK Food Supply Sources

- 11.9 million tonnes of wheat, barley, and oats.
- Accounts for over 60% of UK grown grain.
- The most expensive and volatile input across the whole of the agricultural sector.
- Cost was £5,586 million in 2020.

Increasing forage proportion

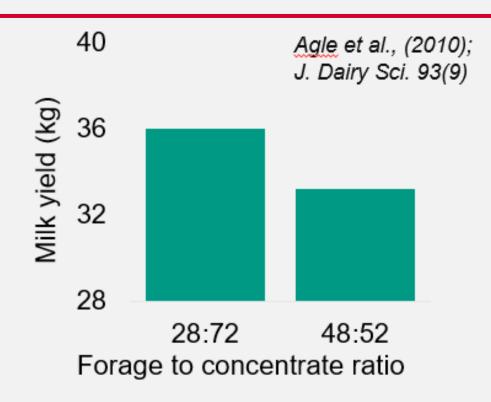


Figure 2: Impact of F:C on Milk yield

- Milk yield is reduced as F:C increases
- Feed efficiency is also often reduced as F:C increases

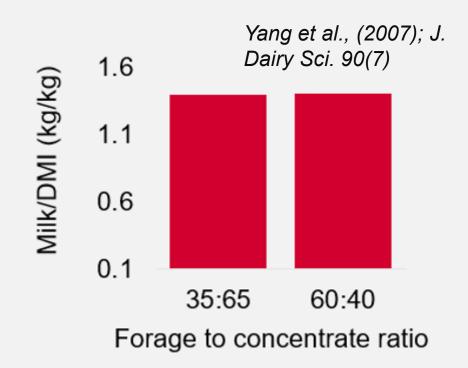
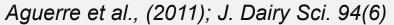
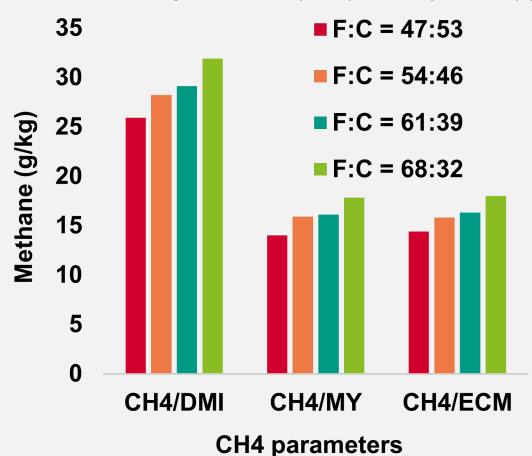


Figure 3: Impact of F:C on fat corrected milk / DMI

Some studies suggest that modest increases could improve feed efficiency by reducing DMI

F:C = forage to concentrate ratio; DMI = dry matter intake





Increasing forage proportion

- Increasing dietary forage may also increase CH₄/DMI and CH₄/milk yield.
- Feeding concentrates has been a strategy to mitigate CH₄ emissions by reducing CH₄ /DMI CH₄/Milk yield
- CH₄ per kg of DMI per kg of MY and ECMY was highest in diets containing 68% compared to 61, 54 and 47% F:C.

Figure 4: Impact of F:C on CH₄ production parameters

F:C = forage to concentrate ratio; CH₄= methane; DMI = dry matter intake; MY = milk yield; ECMY = energy corrected milk yield

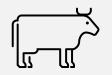
Study aims

The aim of this study was to:

- Investigate the impact of forage proportion (FP) and breed on productivity (milk yield, ECMY), feed efficiency, and CH₄ emissions parameters
- Identify potential FP levels for optimum performance and reduced CH₄ emissions, using linear and quadratic regression models.

FP = forage proportion; CH_4 = methane

Materials and Methods



Data and animals

- Data from 32 cow metabolism studies
- 796 Holstein-Friesian cows (**HF**)
- 50 Norwegian Red cows (NR)
- 46 Jersey x HF (J × HF) crossbred cows
- 16 Norwegian red x HF (NR × HF) crossbred cows

Cow diets

- Forage only (n=65)
- Varying proportions of forage and concentrate (n=843)

Experimental diets for at least 3 weeks

Digestibility stalls 5-8 days

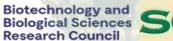
Respiration calorimeter chambers 3-5 days

Statistical analysis

- Data were separated into 4 groups based on forage proportion (FP):
 - Low (**LFP**; 10% to 30%, n=40)
 - Medium (**MFP**; 30% to 59%, n=551)
 - High (HFP; 60% to 87%, n=243)
 - Pure (FOR; 100%, n=65) FP.

Statistical analysis

- GenStat (23rd edition)
- Linear mixed model (residual maximum likelihood analysis; REML)
- Fixed effects: FP (LFP, MFP, HFP and FOR) and breed
- Random: experiment and cow (nested in experiment)
- Pairwise comparisons using Fisher's LSD test


LFP	MFP	HFP	FOR
10-30%	30-59%	60-87%	100%
n = 40	n = 551	n = 243	n = 65

Regression equations

- FP (expressed as % DM) was the explanatory variable
- Response variables: productivity, feed efficiency and CH₄ parameters
- Random effects: cow, experiment, forage proportion, breed, forage type and parity

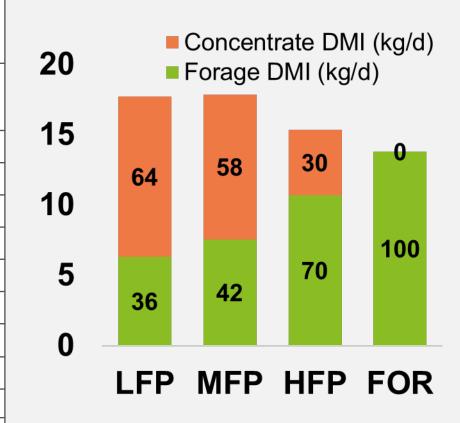

Results: Diet

Table 1. Means ± SE and P-values for the effect of dietary FP on diet composition and feed intake

	LFP	MFP	HFP	FOR	P- value		
Diet chemical composition (kg/kg of DM)							
GE content (MJ/kg)	18.5	18.4	18.5	18.8	0.317		
ME content (MJ/kg)	12.1ab	11.9 ^{ab}	11.6 ^b	11.0 ^b	<0.001		
СР	0.20a	0.19 ^a	0.17 ^b	0.16 ^b	<0.001		
ADF	0.21c	0.21 ^c	0.27 ^b	0.31a	<0.001		
NDF	0.36 ^c	0.37 ^c	0.46 ^b	0.54 ^a	<0.001		
Total DMI (kg/d)	17.3a	17.9a	15.3 ^b	13.8 ^b	<0.001		
CP intake	3.42a	3.40a	2.66b	2.36 ^b	<0.001		
ADF intake	3.65 ^b	3.82 ^{ab}	4.09 ^b	4.22 ^{ab}	<0.001		
NDF intake	6.29 ^c	6.50 ^c	7.09 ^b	7.51 ^a	<0.001		

FP = forage proportion, LFP = low forage proportion (10 - 30% DM), MFP = medium forage proportion (30-59% DM), HFP = high forage proportion (60 - 87% DM), FOR = pure forage (100% DM), GE = gross energy, ME = metabolizable energy, CP = crude protein, ADF = acid detergent fibre, NDF = neutral detergent fibre

Figure 5: Proportions of forage and concentrate DMI (kg/d)

Results: Productivity and feed efficiency Reading

Table 2. Means ± SE and P-values for the effect of dietary FP on productivity and feed efficiency

	LFP	MFP	HFP	FOR	P- value
Milk production (kg/d)					
Milk Yield	25.0 ^a	22.6a	17.5 ^b	11.9 ^b	<0.001
ECMY Yield	25.1a	23.6 ^a	18.3 ^b	12.7c	<0.001
Feed efficiency (kg/kg)					
Milk yield/DMI	1.40a	1.26a	1.15 ^b	0.89 ^b	<0.001
ECMY/DMI	1.43a	1.32a	1.20 ^b	0.95 ^b	<0.001
Milk yield/Forage DMI	5.33a	3.21 ^b	1.72 ^c	0.77 ^d	<0.001
Milk yield/Concentrate DMI	2.05 ^b	2.09 ^b	4.09ª	*	<0.001

FP = forage proportion, LFP = low forage proportion (10 - 30% DM), MFP = medium forage proportion (30-59% DM), HFP = high forage proportion (60 – 87% DM), FOR = pure forage (100% DM), DMI = dry matter intake, ECMY = energy corrected milk yield.

- Milk yield and ECMY were higher in LFP and MFP compared to HFP and FOR
- Milk yield/DMI and ECMY/DMI were higher in LFP and MFP compared to HFP and FOR
- Milk yield/forage DMI decreased with increasing FP
- Milk yield/concentrate DMI increased with increasing FP
- No difference in Milk yield, Milk yield/DMI and ECMY/DMI between HFP and FOR

Results: Productivity and feed efficiency Reading

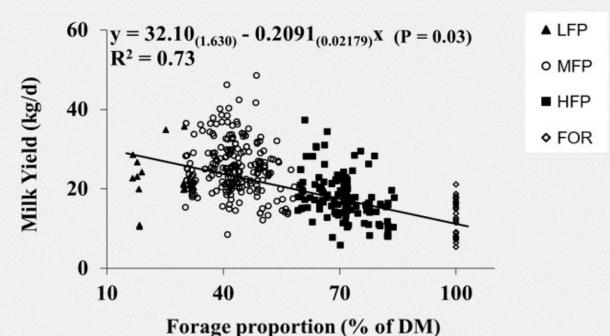


Figure 6: Relationship between FP (%) and milk yield

Linear reductions in milk yield with increasing FP, with milk yield decreasing by 0.21 kg/d with each 1% increase in FP

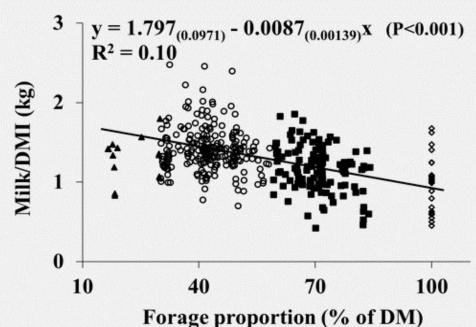


Figure 7: Relationship between FP (%) and milk/DMI

Linear reductions in milk/DMI with increasing FP, with milk/DMI decreasing by 0.09 kg/d with each 1% increase in FP

> FP = forage proportion; DMI = dry matter intake; LFP = low FP; MFP = medium FP; HFP = high FP; FOR = 100% FP

Results: Methane parameters

Table 1. Means ± SE and P-values for the effect of dietary FP on productivity and feed efficiency


	LFP	MFP	HFP	FOR	P-value	
Methane parameters						
CH ₄ (g/d)	384 ^{ab}	397ª	371 ^b	316 ^b	<0.001	
CH ₄ /DMI (g/kg)	22.5 ^{ab}	22.4 ^b	24.3a	22.9 ^{ab}	<0.001	
CH₄/Milk Yield (g/kg)	21.0 ^{ab}	19.1 ^b	22.5 ^a	27.0a	<0.001	
CH ₄ /ECM (g/kg)	21.1 ^{ab}	17.9 ^b	21.6a	25.8a	<0.001	

LFP = low forage proportion (10 - 30% DM), MFP = medium forage proportion (30-59% DM), HFP = high forage proportion (60 - 87% DM), FOR = pure forage (100% DM), ECM = energy corrected milk, CH₄ = methane

- MFP had the highest CH₄ production (g/d) but did not differ to LFP.
- HFP produced the most CH₄/DMI (g/kg).
- HFP and FOR produced the most CH₄/Milk Yield and CH₄/ECM (g/kg) but did not differ from LFP.

Results: Methane parameters

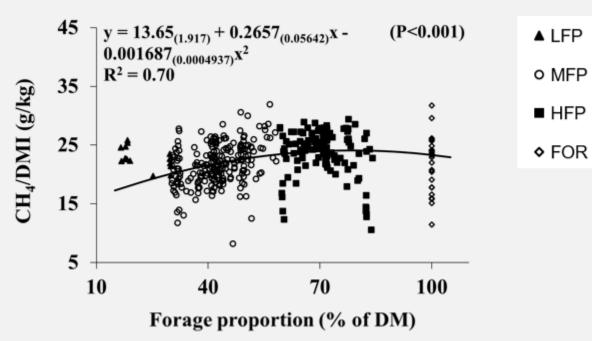
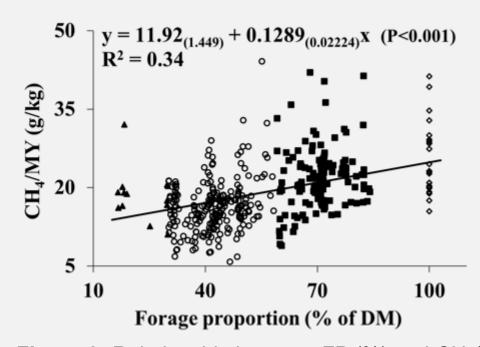



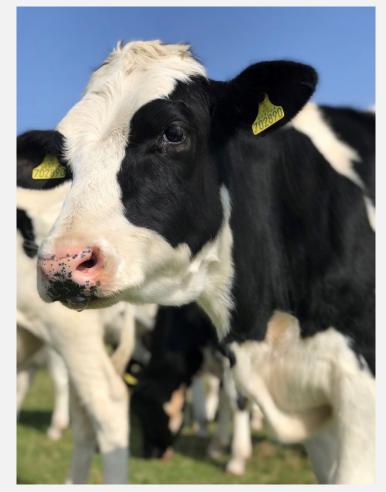
Figure 8: Relationship between FP (%) and CH₄/DMI

CH₄/DMI continues to increase between FP 15 – 75%, after which, CH₄/DMI reduced.

Figure 9: Relationship between FP (%) and CH₄/MY

CH₄/Milk yield increases by 1.2 g/kg with each
 10 % increase in FP.

FP = forage proportion; DMI = dry matter intake; LFP = low FP; MFP = medium FP; HFP = high FP; FOR = 100% FP; CH₄ = methane; MY = milk yield



Conclusion

- A reduction in dietary FP from 60-87% to 30-59%, improved productivity and feed efficiency and reduced CH₄ yield and intensity.
- Regression analysis suggested there was a peak for CH₄/DMI at 75% FP.
- Further reduction in dietary FP to 10-30% did not result in further improvements.
- Milk yield and feed efficiency were similar between diets with 60-87% and 100% FP.
- It may be economically beneficial for pasture-based lowinput systems (characterised by high forage feeding), to adopt a high-forage diet

FP = forage proportion; DMI = dry matter intake; CH₄ = methane

