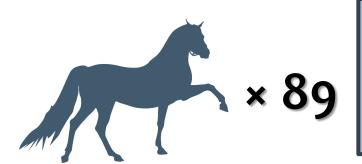
QUANTIFYING THE EFFECT OF LOADING DENSITY AND GENDER ON SELECTED BLOOD COMPONENTS AND CARCASS BRUISES OF SLAUGHTER HORSES

Nikola Čobanović, Milena Radaković, Ivan Vićić, Branko Suvajdžić, Nevena Grković, Nedjeljko Karabasil

INTRODUCTION

- Too high and too low loading density negatively affects welfare of slaughter horses (Collins et al., 2000; lacono et al., 2007)
- Consensus has not been reached for specific recommendations for space allowance in the lorry during transit of slaughter horses (Driessen et al., 2022)
 - In European Union 1.75 m² per horse during a long journey (European Regulation 1/2005)
 - In Australia only 1.20 m² per horse during a long journey (Australian Animal Welfare Standards and Guidelines, 2021)
- Horses of different genders (mares, geldings and stallions) may react differently to various stressful situations on the day of slaughter (Auen et al., 2020; Razmaitė et al., 2021)



THE AIM OF THE STUDY

 The aim of this study was to determine the effects of loading density and gender on blood welfare indicators and carcass bruises of slaughter horses

Genders: 35 mares, 31 geldings and 23 stallions

Live weight: ~300 kg **Age:** ~3 years old

Breed: Domestic mountain pony

Collecting point: Ruma, Srem district, Autonomous Province of Vojvodina, Serbia

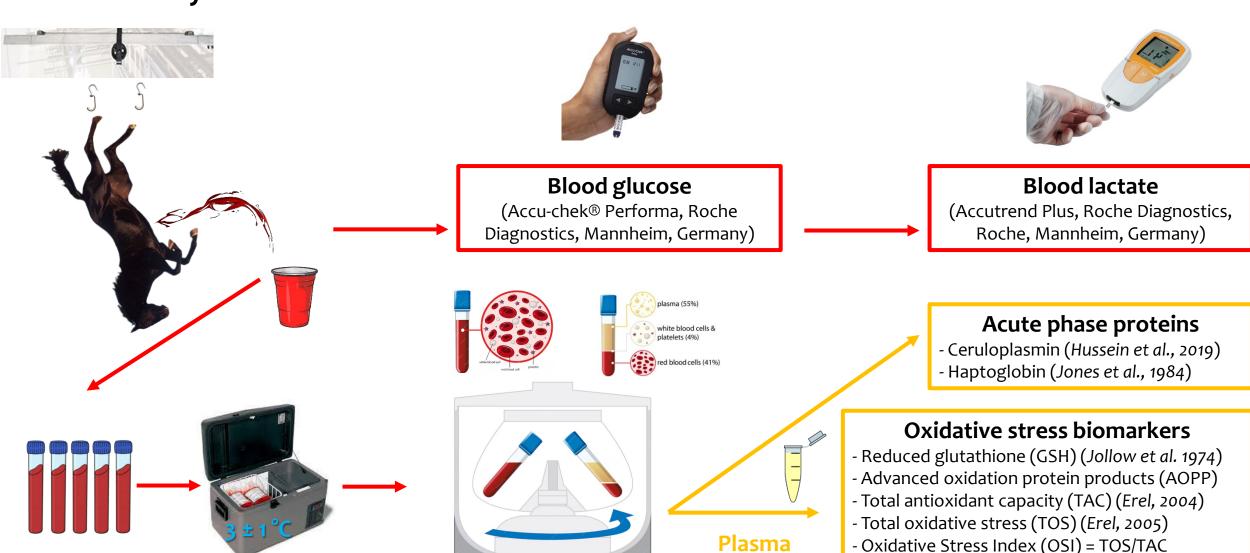
11 shipments during spring

The same lorry and driver

Transportation time: about one hour (63.33 ± 5.41 minutes)

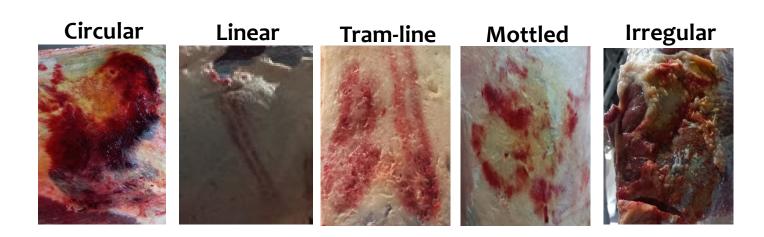
Loading density: from 198 to 236 kg/m² based on the live weight and number of horses

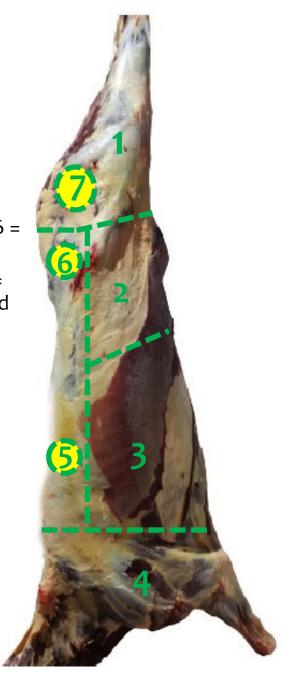
The same accredited slaughter plant and slaughterhouse personnel


Lairage time: ~3 hours

Stunning: penetrating captive bolt pistol

Exanguination: cutting the neck blood vessels (a. carotis communis and v. jugularis)


Legislation: Council Directive of the European Union 95/221EC

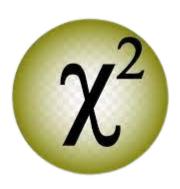

Blood analysis

Carcass bruise evaluation

- Both sides of the carcasses were assessed 45 minutes postmortem in the cooling room using a visual scoring system (Miranda-de la Lama et al., 2021)
 - Total number of bruises per carcass
 - Anatomical region (1 = rear limb, 2 = abdominal wall, 3 = thoracic wall, 4 = front leg, 5 = loin, 6 = tuber coxae and its muscular insertions, 7 = tuber isquiadicum and its muscular insertions)
 - Bruise severity (grade o = no visible bruises; grade = affecting subcutaneous tissue; grade 2 = includes subcutaneous tissue and muscle; grade 3 = involves subcutaneous tissue, muscle and bone)
 - **Bruise shape** (circular, linear, tram-line, mottled, and irregular)
 - Bruise size (small = ≥5 cm in diameter; medium = 6-10 cm; and large = ≥10 cm)

Statistical analysis

Statistical programme: SPSS software (Version 23.0, IBM Corporation, Armonk, NY, USA) (SPSS, 2015) Statistical tests:


- 1. Two-way ANOVA (2 × 3) with Tukey's multiple comparison test to test the effect of loading density (high and low) and gender (mares, geldings and stallions), and their interaction
- 2. Chi-squared test to examine significant differences in carcass bruises between groups

Presentation of the results: means with standard deviations

Statistical significance: P < 0.05

Table 1. Effects of loading density and gender on the selected blood welfare indicators (mean value ± standard deviation) of slaughter horses (n = 89).

Loading density		High			Low	Main Effects		Interaction			
Gender	Mares	Geldings	Stallions	Mares	Geldings	Stallions	Loading density	Gender	Loading	g density ×	Gender
Number of horses	21	17	12	14	14	11		P-v	alue		
Stress metabolites											
Lactate (mmol/L)	8.54 ± 0.71 ^a	6.61 ± 0.50 ^b	14.44 ± 1.72 ^c	4.88 ± 0.43 ^d	4.23 ± 1.19 ^d	10.94 ± 0.97 ^e	<0.0001	<0.0001	\downarrow	0.021	1
Glucose (mmol/L)	6.24 ± 0.92 ^a	5.14 ± 0.27 ^b	8.33 ± 1.02 ^b	4.46 ± 0.14 ^d	4.40 ± 0.47 ^d	6.00 ± 0.60 ^a	<0.0001	<0.0001	1	<0.0001	$\overline{\uparrow}$
Acute-phase proteins											
Haptoglobin (g/L)	2.39 ± 0.23	2.41 ± 0.18	2.33 ± 0.39	2.37 ± 0.14	2.32 ± 0.27	2.41 ± 0.08	0.864	0.952		0.462	
Ceruloplasmin (mg/dL)	11.26 ± 0.84ª	7.99 ± 1.49 ^b	21 . 21 ± 3.44 ^c	7.24 ± 0.49 ^b	4.45 ± 1.20 ^d	13.93 ± 0.88e	<0.0001	<0.0001	1	<0.0001	$\overline{\uparrow}$
Oxidative stress biomarkers											_
GSH (μM/L)	0.42 ± 0.11 ^a	0.65 ± 0.06 ^b	0.10 ± 0.05 ^c	0.89 ± 0.11 ^d	1.64 ± 0.49 ^e	0.31 ± 0.08ª	<0.0001	<0.0001	1	<0.0001	<u></u>
AOPP (μmol/L)	63.35 ± 2.25 ^a	56.10 ± 2.97 ^b	71.90 ± 3.83°	57.49 ± 0.88 ^b	43.13 ± 5.20 ^d	64.33 ± 2.06ª	<0.0001	<0.0001	1	<0.0001	$\overline{\uparrow}$
TAC (mmol/L)	0.83 ± 0.34	0.70 ± 0.41	0.83 ± 0.40	0.73 ± 0.51	0.77 ± 0.53	0.93 ± 0.54	0.821	0.507		0.655	•
TOS (µmol/L)	84.16 ± 22.29	76.42 ± 22.10	78.87 ± 25.34	75.59 ± 26.39	71.06 ± 26.68	75.77 ± 24.57	0.285	0.601		0.914	
Oxidative stress index	0.12 ± 0.06	0.16 ± 0.14	0.16 ± 0.18	0.31 ± 0.41	0.19 ± 0.21	0.16 ± 0.19	0.112	0.656		0.222	

Abbreviations: GSH—glutathione; AOPP—advanced oxidation protein products; TAC—total antioxidant capacity; TOS—total oxidative stress; Note: different letters in the same row indicate a significant difference at P < 0.05 (a-e).

VS.

Table 2. Effects of loading density and gender on the occurrence of carcass bruises in slaughter horses (n = 89).

Loading density	High			Low			Main Effec	ts	Interaction		
Gender	Mares	Geldings	Stallions	Mares	Geldings	Stallions	Loading density Gender		Loading density × Gender		
Number of horses	21	17	12	14	14	11		P-v	⁄alue		
Bruise severity (%)											
No carcass bruises (grade o)	47.62 ^a	58.82 ^a	25 . 00 ^b	85.72 ^c	92 . 86 ^c	81 . 82 ^c	<0.0001	0.2447	0.0012		
Mild carcass bruises (grade 1)	42.86ª	35.29 ^a	16.67 ^{ab}	7 . 14 ^b	7 . 14 ^b	9.09 ^b	0.0042	0.3827	0.0383		
Severe carcass bruises (grade 2)	9.52 ^a	5.89 ^a	58.33 ^b	7.14 ^a	0.00 ^a	9.09ª	0.0599	0.0020	0.0002	1	
Bruise size (%)											
Small (< 5 cm)	28.57	23.53	0.00	7.14	7.14	9.09	0.1353	0.2448	0.1596		
Medium (6–10 cm)	23.81	17.65	16.67	7.14	0.00	9.09	0.0599	0.6735	0.4011		
Large (≥10 cm)	0.00 ^a	0.00 ^a	41 . 67 ^b	0.00 ^a	0.00 ^a	0.00 ^a	0.0649	0.0005	<0.0001	↑	
Bruise shape (%)											
Circular	14.29 ^a	17 . 65ª	58.33 ^b	0.00 ^a	0.00 ^a	0.00 ^a	0.0004	0.0440	0.0001	↑	
Linear	9.52	5.88	0.00	7.14	7.14	9.09	>0.9999	0.8187	0.9400		
Tram-line	9.52	5.88	0.00	7.14	0.00	9.09	>0.9999	0.6125	0.7817		
Mottled	9.52	5.88	0.00	0.00	0.00	0.00	0.2531	0.4980	0.4733		
Irregular	9.52	5.88	16.67	0.00	0.00	0.00	0.0649	0.6887	0.3375		
Anatomical region (%)											
Rear limb	4.76	5.88	0.00	0.00	0.00	0.00	0.5020	0.6966	0.7308		
Abdominal wall	4.76ª	5.88ª	33.33 ^b	0.00 ^a	0.00 ^a	0.00 ^a	0.0330	0.0609	0.0056	↑	
Thoracic wall	4.76 ^a	5.88ª	41 . 67 ^b	0.00 ^a	0.00 ^a	0.00 ^a	0.0167	0.0162	0.0004	↑	
Front leg	4.76	5.88	0.00	0.00	0.00	0.00	0.5020	0.6966	0.7308		
Loin	9.52	5.88	0.00	7.14	0.00	0.00	0.6282	0.2789	0.6563		
Hip	9.52	5.88	0.00	7.14	0.00	9.09	>0.9999	0.6125	0.7817		
Pin	9.52	5.88	0.00	0.00	7.14	9.09	>0.9999	0.9459	0.7817		

Note: different letters in the same row indicate a significant difference at P < 0.05 (a-e).

CONCLUSIONS

- The results of this study showed that high loading density, regardless of gender, negatively affects horse welfare during transportation
- In addition, stallions were the most sensitive to poor transport conditions, while geldings were the most resistant
- In contrast, transport of slaughter horses at lower densities, irrespective of gender, resulted in improved animal welfare
- To define optimal travel density, additional research is necessary to determine the effects of different loading density on behaviour, physiology and carcass and meat quality of slaughter horses