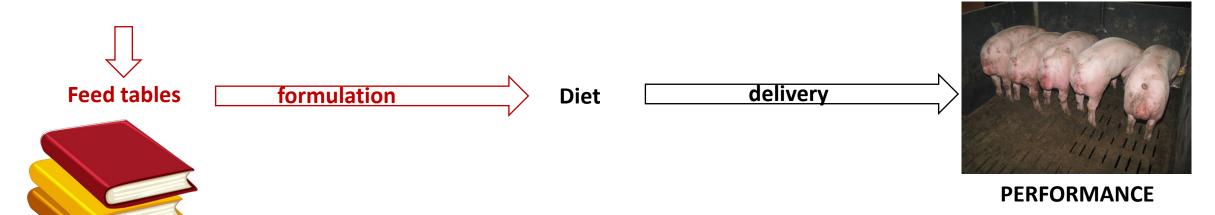
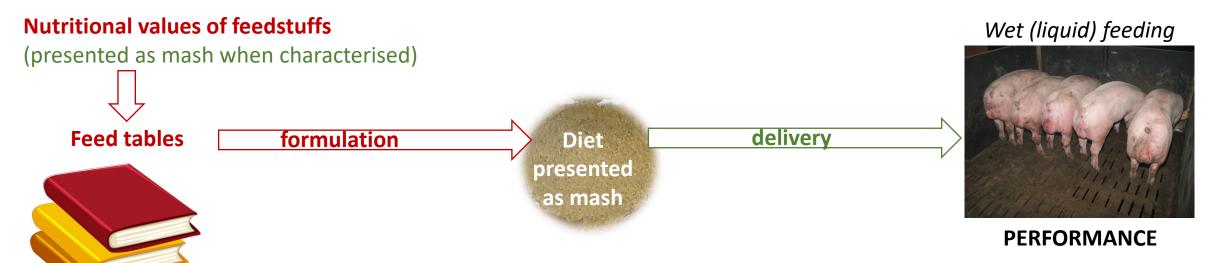


Effect of starch source in pelleted diets on growth performance of pigs

A. Agouros^{1,2}, L. Montagne¹, M. Le Gall², K. Quéméneur²,


E. Labussière¹ and N. Quiniou³



Nutritional values of feedstuffs

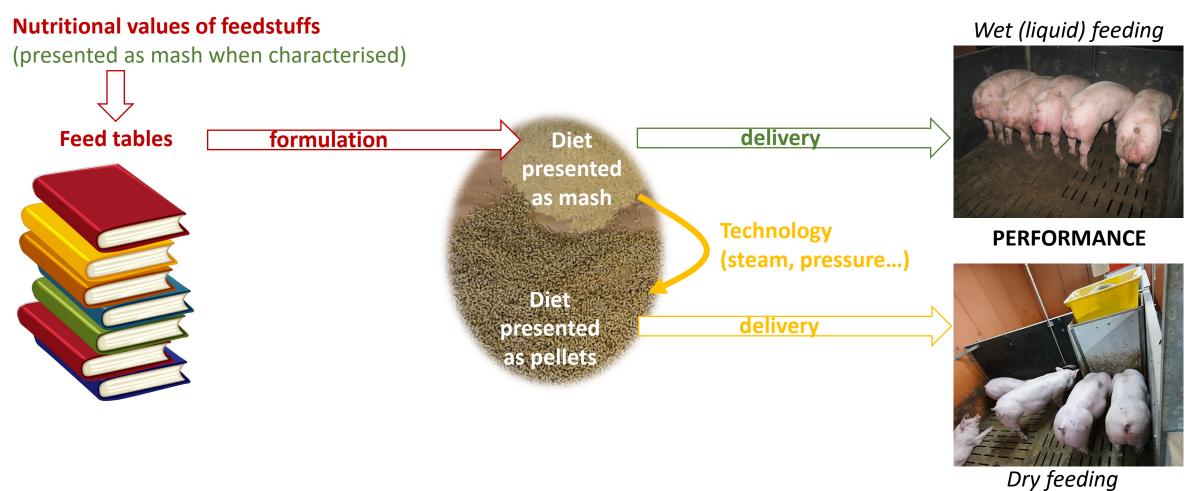


Image of books by brgfx on Freepik

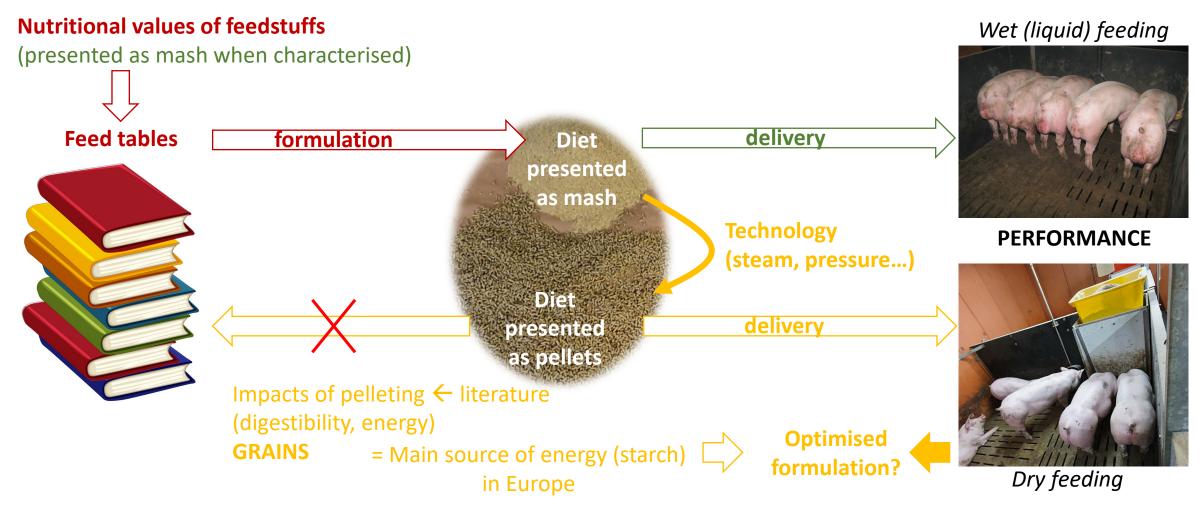


Image of books by brgfx on Freepik

Experimental design

2 batches of 224 pigs

Crossbred (Large White x Landrace) x Pietrain gilts and entire males
2-phase feeding strategy *ad libitum*16 pens of 7 pigs per treatment

- Wheat: only wheat (and wheat bran)

- Barley: only barley

- B / W: barley and wheat (and wheat bran)

Formulation based on mash values

→ net energy (NE): 9.4 MJ/kg

Pelleted diets

Diets

Formulation	All treatments		
→ nutritionnal values	Phase 1	Phase 2	
Crude protein	14.9 %	14.1 %	
Crude fiber	4.7 %		
Crude fat	3.0 %		
Starch	43.8 %	44.1 %	
Digestible lysine/NE	0.93 g/MJ	0.85 g/MJ	
Net energy as mash (NE _{mash})	9.4 MJ/kg		

	Incorporation rates of feedstuff, %		Treatment			
			Barley	B/W	Wheat	
		Barley	83 %	42 %		
	Phase 1	Wheat		34 %	67 %	
		Wheat bran		6 %	13 %	
		Barley	84 %	42 %		
	Phase 2	Wheat		34 %	68 %	
		Wheat bran		7 %	14 %	

+Soybean and sunflower meals, synthetic amino acids, vegetable oil (1.25%), minerals, phytases

As fed

Phase 1: up to 70 kg BW

Phase 2: above 70 kg BW

Measurements

Body weight (BW) at arrival, +4 and +8 wks, at slaughter

Feed intake/pen between two weighings

Hot carcass weight
Image Meater back Fat
and Muscle thicknesses¹

Measurements and calculations

Body weight (BW)

at arrival, +4 and +8 wks, at slaughter

Average daily gain (ADG)

Feed intake/pen

between two weighings

Daily feed intake (DFI) or NE intake Feed conversion ratio (FCR)

Hot carcass weight
Image Meater back Fat

and **M**uscle thicknesses¹

Carcass leanness (%)

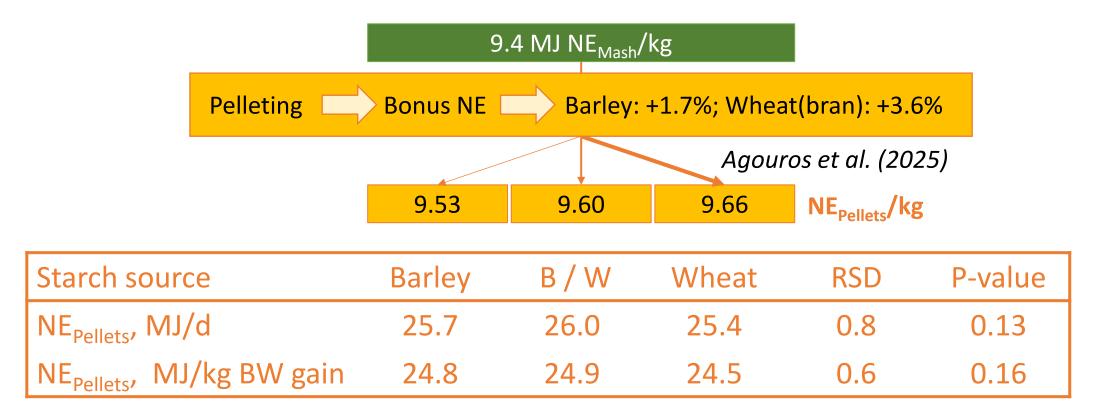
Results over the 31 – 117 kg BW range

Starch source	Barley	B/W	Wheat	RSD	P-value
ADFI, kg/d	2.69 ^a	2.70 ^a	2.62 ^a	0.09	0.04
ADG, g/d	1022	1034	1031	77	0.53
FCR, kg/kg	2.60 ^a	2.59 ^a	2.53 ^b	0.06	0.01
Carcass leanness, %	61.2	61.4	61.7	1.9	0.19

Same ADG and carcass leanness for the 3 treatments

But significant lower ADFI and FCR with Wheat-based diet

different utilization of energy?


Results over the 31 – 117 kg BW range

Starch source	Barley	B/W	Wheat	RSD	P-value
NE _{Mash} , MJ/d	25.3 ^a	25.4 ^a	24.6 ^b	0.8	0.03
NE _{Mash} , MJ/kg BW gain	24.5 ^a	24.3 ^a	23.8 ^b	0.6	< 0.01

Less NE_{Mash} apparently used with the Wheat-based diet

→ what about the effect of pelleting on the NE concentration of grains?

Results over the 31 – 117 kg BW range

No significant difference in NE efficiency when the effect of pelleting on NE value of grains is accounted for

Conclusion

Single-cereal based diets formulated to be iso-NE based on mash values **but pelleted** result in different growth performances.

Based on calculated NE values after pelleting

- pigs adapt feed intake to energy content
- they have the same energy efficiency which is consistent with their similar growth rate and carcass leanness

All differences were attributed to the variation in the dietary NE concentration induced by pelleting.

But what about the impact of pelleting on the concentration of other nutrients in the diet?

