

Evaluation of the soybean replacement as protein source with Mediterranean legumes in the performance of growing pigs

María Rodríguez¹, Ignacio Fernández-Fígares², Rosa Nieto², Joaquín Morales¹

¹Animal Data Analytics, S.L. Segovia, Spain ²Estación Experimental del Zaidín, CSIC, Granada, Spain

INTRODUCTION

- ➤ It is crucial to reduce livestock emissions by using feed materials with a low carbon footprint.
- > Such feed materials include local products that could be included in pigs' feed to replace soybean.
- ➤ The use of local protein resources will contribute to the development and maintenance of the population in rural areas.

OBJECTIVE

To evaluate different local legumes (pea, lentil and chickpea) to replace soya (50% or 100%) as protein source in pig diets. The effect was evaluated in terms of pig health and performance.

- ✓ Commercial farm in Segovia (Spain)
- ✓ 252 pigs (Pietrain boar x DNA sow)
- ✓ Initial age: 56 days of life
- ✓ Final age: 84 days of life
- ✓ Initial body weight: 20.3 ± 1.34 kg

Animals and facilities

Experimental treatments

MATERIAL AND METHODS

Feed mill

Supplier

Legume distribution company

Discards from human consumption

Experimental treatments

MATERIAL AND METHODS

T1 Soya 100%

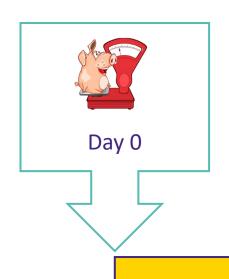
T2 Pea 100%

T3
Pea 50%
Soya 50%

T4 Lentil 100%

T5 Lentil 50% Soya 50%

T6 Chickpea 100%


T7
Chickpea 50%
Soya 50%

Ingredients	Negative Control	Pea100	Pea50	Lentil100	Lentil50	Chickpea100	Chickpea50				
Ingredients, g/kg											
Barley	349	256	412	466	400	474	414				
Corn	145	45	96	220	208	55	138				
Soybean 47	155	0	94	0	89	0	93				
Wheat	327	180	174	9	150	0	140				
Pea	-	495	200	-	-	-	-				
Lentil	-	-	-	280	129	-	-				
Chickpea	-	-	-	-	-	444	190				
Calculated nutrient composition, g/kg											
Total CP	160	160	160	160	161	161	160				
CP from soya	74	0	42	0	42	0	43				
CP from legume	0	102	42	94	42	104	43				
ME, MJ/kg	13.0	12.9	12.9	13.2	13.1	13.3	13.2				
Lipids	18.4	16.1	17.6	19.7	19.4	34.7	27.0				
Lys SID	7.7	7.8	7.9	7.8	7.9	7.8	7.9				
P dig	2.5	2.8	2.6	2.3	2.4	1.9	2.2				

Diets were formulated to be isonutritive (13.1 MJ/kg ME and 160 g/kg CP)

Diets were complemented with essential amino acids to maintain the same essential (ideal) amino acid profile

Experimental design

252 pig 36 replicates 6 pig/replicate 6 replicates/treatment

Experimental growing feed

Individually weighed

Pool of feces from at least 3 pigs/pen

Parameters recorded

Performance:

- Average daily gain (ADG)
- Average daily feed intake (ADFI)
- Gain feed ratio (GFR)

Apparent fecal digestibility (by acid-insoluble ash feed content):

- Dry matter
- Organic matter
- Crude protein

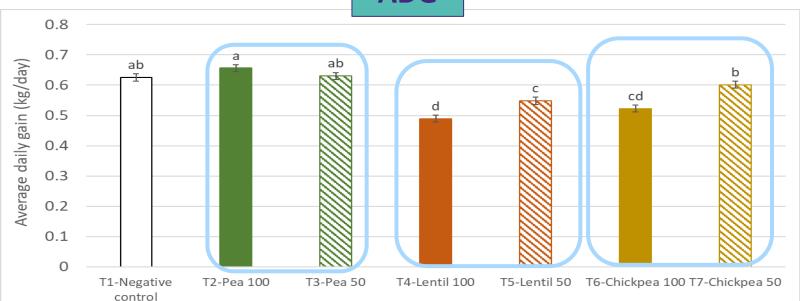
Statistical analysis

Statistical analysis was conducted by ANOVA.

Contrast analyses were conducted:

- ☐ Negative control vs Pea (50% & 100%)
- ☐ Negative control vs Lentil (50% & 100%)
- ☐ Negative control vs Chickpea (50% & 100%)

RESULTS Diets


	Negative Control	Pea100	Pea50	Lentil100	Lentil50	Chickpea100	Chickpea50
Dry matter, %	89.2	89.0	89.1	89.4	88.9	88.8	89.3
Crude protein, %	16.7	17.0	16.7	16.5	16.6	15.7	14.1
Ether extract, %	2.24	1.92	2.39	2.68	3.39	2.63	2.59
Ash, %	5.44	5.15	4.72	5.49	5.25	5.06	4.81
Gross energy, cal/g	3786	3804	3830	3799	3824	3884	3796

Despite being formulated to be isoprotein, the chickpea diets had less protein.

RESULTS

ADG

Performance

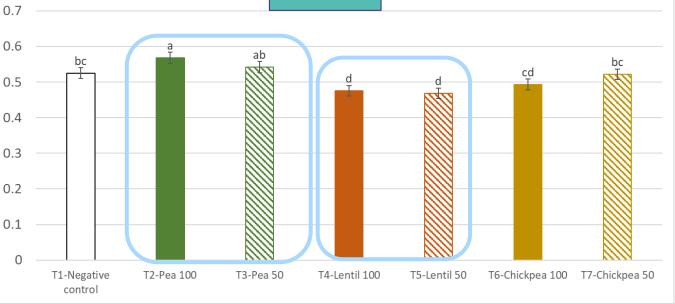
Pigs fed pea had the highest ADG

Pigs fed chickpea were intermediate

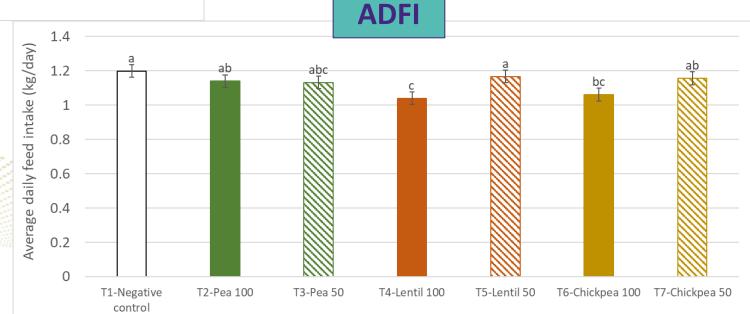
Pigs fed the lentil diets had the lowest ADG

Pigs fed pea diets showed higher final BW than the rest of pigs, even tended to be higher than those fed with soya

The final BW of pigs fed with lentil and chickpea was lower than those fed with soya

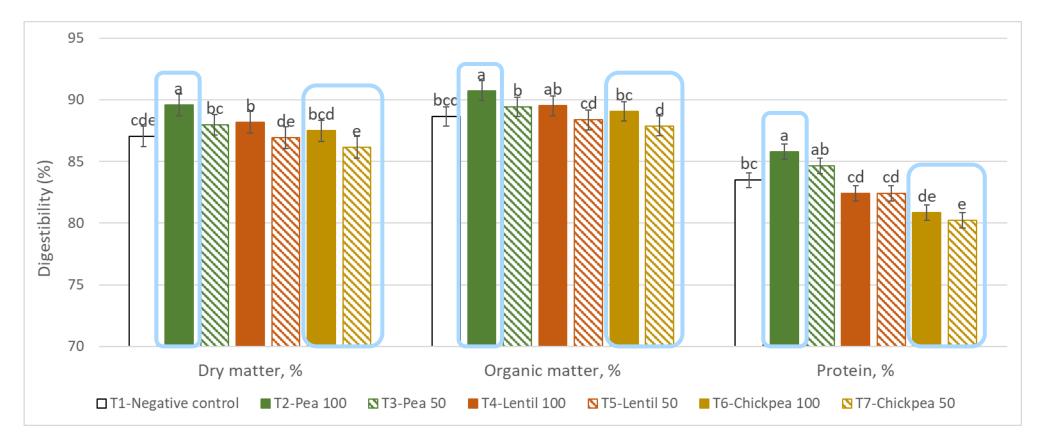

Different letters indicate statistical differences (P<0.05)

RESULTS GFR 0.7 0.6 Growth to feed ratio (kg/kg)


Performance

Pigs fed pea diets showed the highest feed efficiency

Pigs fed the lentil diets had the **lowest GFR**


Variable results in feed intake

Different letters indicate statistical differences (P<0.05)

RESULTS

Digestibility

Pigs fed the pea100 diet showed the highest nutrient digestibility values, while pigs fed the chickpea diets showed the lowest ones.

DISCUSSION

- > Legumes could replace totally or partially soybean as main protein source in pig diets.
- > Pea, commonly used in animal feeding, showed the best performance results.
- Chickpea showed an intermediate performance may be related to disparities in the evaluation of the ingredient for the variability in discarded ingredients for humans.
- ➤ Lentil showed the lowest performance, and causes should be further investigated.

TAKE HOME MESSAGE

Peas resulted the best alternative to replace soybean as protein source in terms of performance and nutrient digestibility.

Acknowledgment

Funded by European Union's Horizon Europe Research and Innovation Program, Grant agreement No. 01059609 (Re-Livestock).

Evaluation of the soybean replacement as protein source with Mediterranean legumes in the performance of growing pigs

María Rodríguez¹, Ignacio Fernández-Fígares², Rosa Nieto², Joaquín Morales¹

¹Animal Data Analytics, S.L. Segovia, Spain ²Estación Experimental del Zaidín, CSIC, Granada, Spain

