

¹Dipartimento di Agraria, University of Sassari, Italy

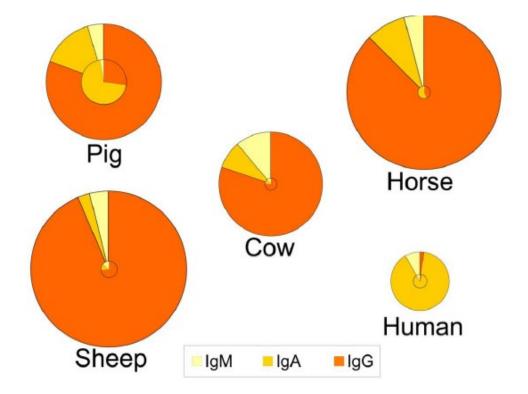
²Area Science Park, Basovizza, 34149 Trieste, Italy,

³Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland

Could the inclusion of grape pomace in the diet of dairy ewes in late gestation influence the quality of colostrum and its microbiota?

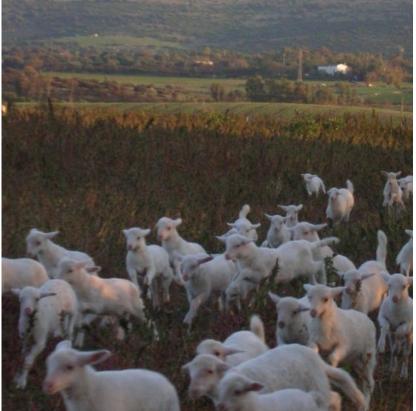
Colostrum quality

- ✓ Provide immunogloblulins (IgG, IgM, IgA) that confer passive immunity to newborn lambs
- ✓ Rich in fats, carbohydrates and proteins, as well as micronutrients such as minerals, it is the fundamental source of nutrients for newborn lambs.
- ✓ A high immune load and good composition of colostrum are essential in dairy sheep flocks to ensure a strong antibody reserve for the newborn in the peripartum period, to guarantee high disease resistance and survival in the replacement animal.



The sheep colostrum displays the highest IgG content

Sheep colostrum


- ✓ IgG, 90%
- ✓ IgA, 4%
- ✓ IgM, 6%

Hurley W. L. and Theil P. K. 2011. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients. 3, 442-474; doi:10.3390/nu3040442

- In Sardinia: about 3 millions of dairy ewes
- represents the 60% of the total dairy sheep bred in Italy
- About 75% of Italian meat from suckling lambs came from Sarda breed
- There is scant data available on the quality of colostrum in Sarda dairy sheep

Main factors affecting colostrum quality (IgG content)

- √ Species
- ✓ breed
- ✓ Parity
- ✓ Post-partum time sampling
- ✓ Diseases
- ✓ Season
- ✓ Pre-partum nutrition

Pre-partum nutrition

- Dietary energy level
- Dietary starch content
- Metabolizable protein supply
- Dietary strategies to mitigate hypocalcemia (feeding a zeolite or manipulating the dietary calcium or cation anion difference (DCAD))
- Mineral and vitamin inclusion (vitamin D, vitamins B, Cu, Zn, Mn)
- Feed additives (magnesium butyrate, monensin, etc)

ARTICLE IN PRESS—UNCORRECTED PROOF

INVITED REVIEW: Nutritional and management factors that influence colostrum production and composition in dairy cows

T. A. Westhoff, OS. Borchardt, Oand S. Mann1*
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Koenigsweg 65, 14163 Berlin, Germany

Supplementation of ingredients with antioxidant properties in late gestation improve IgG content in colostrum of sows

- Grape seed polyphenols (Wang et al., 2019 J. Anim. Sci.)
- Ginger extract (Dae Lee et al., 2013 Livestock Science)
- Forsythia suspensa extract (Long et al., 2020 ANIFEE)
- Green alga (*U. armoricana*) extracts (Bussyet al., 2019 Vet. Anim. Sci.)
- Seaweed extract from a Laminaria spp (Leonard et al., 2010 J. Anim. Sci.)

Dietary supplementation of Moringa oleifera leaf meal in late gestation improve IgG content in colostrum of cows

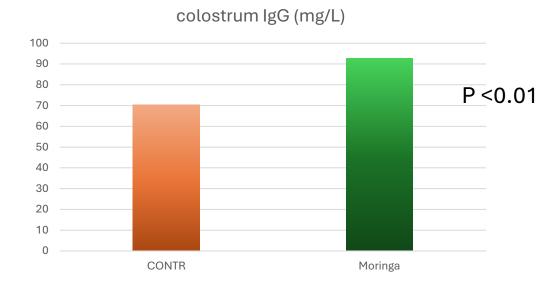
J. Dairy Sci. 105:5813-5821 https://doi.org/10.3168/ids.2021-21535

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Prepartum supplementation of *Moringa oleifera* leaf meal: Effects on health of the dam, colostrum quality, and acquisition of immunity in the calf

T. W. Kekana, ^{1,2}* U. Marume, ² and F. V. Nherera-Chokuda ³

¹Elsenburg Agricultural Training Institute, Western Cape Department of Agriculture, Private Bag X01, Elsenburg, 7607, South Africa

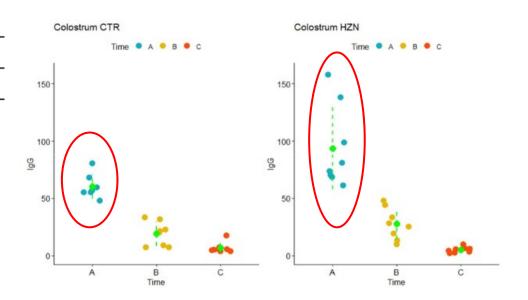

²Department of Animal Science, North-West University, Private Bag X 2046, Mmabatho, 2735, South Africa

³National Emergent Red Meat Producers' Organisation, P.O. Box 36461, Pretoria, 0102, South Africa

Table 3. Effect of prepartum Moringa oleifera leaf meal (MOLM) supplementation to dairy cows on colostrum IgG

	Trea	tment^1		
${\rm IgG,\ g/L}$	CON	MOLM	SEM	<i>P</i> -value
First harvest Second harvest Third harvest Fourth harvest Fifth harvest Sixth harvest	70.3 66.3 33.2 27.8 6.95 8.22	92.7 75.2 42.3 35.4 11.2 13.2	2.82 2.14 1.82 2.22 0.26 0.96	<0.01 0.04 0.03 0.04 0.03 0.02

 $^{^{1}}$ CON = control; MOLM = 16.66 g of MOLM/100 kg of BW per day.


Moringa oleifera is reach in flavonoids (e.g. myricetin, quercitine...)

Dietary supplementation of **halzenut skin** in late gestation improve

IgG content in colostrum of ewes

animals	MDPI
Article Hazelnut Skin in Ewes' Diet: Effects on Colostrum Immunoglobulin G and Passive Transfer of Immun to the Lambs	iity
Irene Viola 10, Paolo Tizzani 10, Giovanni Perona 10, Carola Lussiana 2, Antonio Mimosi 2 and Paolo Cornale 2-10	, Patrizia Ponzio ¹

Sample	Group (n = 8)1	A
Sheep	CTR	16.5±3.2
	HZN	16 0+1 6
Colostrum	CTR	60.4±10.7
	HZN	93.7±35.9
Lambs	CTR	5.2±1.5
	HZN	4.0±1.2

Hazelnut skin supplementation increase IgG colostrum concentration at lambing, with improved immune passive transfer to the suckling lambs.

Item ^f	CON	GM
BCS change	0.05	0.05
BW change, kg	0.94	1.01
DMY, kg/day	1.88 ^a	1.79 ^b
Yield, g/day		
Milk	$1220^{\rm b}$	1421 ^a
FPCM	1245 ^b	1373 ^a
Fat	80.92 ^{ab c}	86.36 ^a
Protein	71.5 ^b	79.9 ^a
Casein	55.35 ^b c	61.21 ^a
Lactose	57.84 ^b	66.63 ^a
Urea	0.61 ^{ab}	0.665 ^a
Milk composition		
Fat, g/kg	67.9 ^a	59.2°
Protein, g/kg	60.4 ^a	56.3 ^b
Casein, g/kg	47.1 ^a	43.5 ^b
Lactose, g/kg	47.8 ^a	48.2 ^a
Urea, mg/dL	48.4 ^{ab}	46.7 ^b
Log SCC, × 1000 cell/mL	2.01	2.11
Log TBC, x 1000 UFC/mL	2.80 ^a	2.43 ^b

Contents lists available at ScienceDirect

Animal Feed Science and Technology

iournal homepage: www.elsevier.com/locate/anifeedsci

Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters

A. Nudda^a,*, G. Buffa^a, A.S. Atzori^a, M.G. Cappai^b, P. Caboni^c, G. Fais^c, G. Pulina^a

The grape marc supplementation (100 g/d) to lactating Sarda ewes increased milk production (+200 g/day), as well as protein (+8.4 g/day) and fat (+5.5 g/day) milk contents compared to the CON group.

CON

1,2

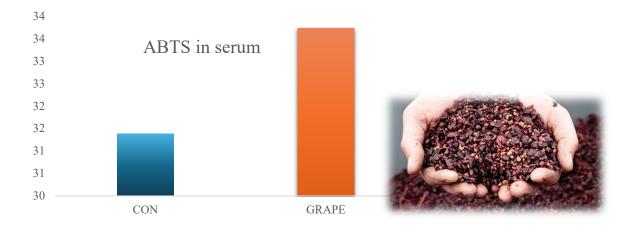
1,0

0,8

0,6

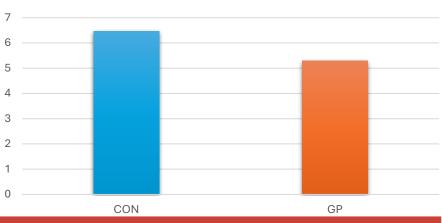
0.4

0.2


0.0

Supplementation of by-products from grape, tomato and myrtle affects antioxidant status of dairy ewes and milk fatty acid profile

Giovanna Buffa¹ | Eleni Tsiplakou² | Christina Mitsiopoulou² | Giuseppe Pulina¹ | Anna Nudda¹


The grape marc supplementation (100 g/d) to lactating Sarda ewes improve the antioxidant status of blood (FRAP and ABTS) and milk (less PC) compared to the CON group.

GRAPE

FRAP in serum

Protein Carbonyls in milk

Nutritional factors affects milk microbiota

- ✓ Diet could affect the gastrointestinal microbiome and, consequently, nutritional factors may affect milk microbiome (Trevisi et al., 2021)
- ✓ There is not literature about the effect of polyphenols on colostrum and milk microbiota

Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding

Mérilie Gagnon, ^{1,2} **Alexandre J. K. Ouamba,** ^{1,2} **Gisèle LaPointe,** ^{2,3} **P. Yvan Chouinard,** ^{2,4} **and Denis Roy** ^{1,2*} ¹Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, QC G1V 0A6, Canada ²Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada ³Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada

Phylogenetic variation in raw cow milk microbiota and the impact of forage combinations and use of silage inoculants

Alexandre J. K. Ouamba^{1,2}, Mérilie Gagnon^{1,2}, Thibault Varin¹, P. Yvan Chouinard^{2,3}, Gisèle LaPointe^{2,4} and Denis Roy^{1,2}*

¹Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, QC, Canada, ²Regroupement de Recherche pour Un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC, Canada, ³Département des Sciences Animales, Université Laval, Québec, QC, Canada, ⁴Department of Food Science, University of Guelph, Guelph, ON, Canada

Shift in the cow milk microbiota during alpine pasture as analyzed by culture dependent and high-throughput sequencing techniques

Ilaria Carafa^a, Irma Castro Navarro^a, Giovanni Bittante^b, Franco Tagliapietra^b, Luigi Gallo^b, Kieran Tuohy^a, Elena Franciosi^{a,*}

RESEARCH ARTICLE

Effect of Pasture Versus Indoor Feeding on Milk Microbiota of Goats

Tian JING 1,a,# Xiaoting YAO 1,b,# Tiantian JI 1,c Jiarui DONG 1,d Xi CHEN 1,e Fengqiang CHEN 1,f Hao FENG 1,g Tianxing WANG 1,h Huiying ZHAO 1,i (*) Dekun CHEN 1,j (*) Wentao MA 1,k (*)

ORCIDs: 0000-0002-5634-9725; 0000-0002-2853-6240; 0000-0002-8634-9558; 0000-0002-8162-6157; 0000-0002-7207-4709

f0000-0001-6342-583X; g0000-0001-5315-540X; h0000-0001-8636-6801; f0000-0003-2449-4108; f0000-0002-3215-9337; h0000-0002-4747-1489

a Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all' Adige, TN, Italy

b Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy

^{*} These authors contributed equally to this work

¹ Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, CHINA

Polyphenols from grape could affect the ruminal microbial populations


RESEARCH ARTICLE

Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile

Filippo Biscarini 1,20, Fiorentina Palazzo 30, Federica Castellani 3, Giulia Masetti 2,4 Lisa Grotta3, Angelo Cichelli5, Giuseppe Martino 3*

ITALIAN JOURNAL OF ANIMAL SCIENCE 2020, VOL. 19, NO. 1, 1462-1471 https://doi.org/10.1080/1828051X.2020.1848465

Agroindustrial by-products from tomato, grape and myrtle given at low dosage to lactating dairy ewes: effects on rumen parameters and microbiota

G. Buffa^a, N. P. Mangia^a , A. Cesarani^a, D. Licastro^b, S. Sorbolini^a , G. Pulina^a and A. Nudda^a

Effect of Grape Pomace Intake on the Rumen Bacterial Community of Sheep

Michal Rolinec 1,*0, Juraj Medo 20, Michal Gábor 1, Martina Miluchová 10, Milan Šimko 1, Branislav Gálik 10, Ondrej Hanušovský 10, Zuzana Schubertová 3, Daniel Bíro 1, Luboš Zábranský 40 and Miroslav Juráček 1,*10

Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches

V. Vasta, M. Daghio, A. Cappucci, A. Buccioni, A. Serra, C. Viti, and M. Mele 3.4* Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy

²Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy ³Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy

Journal of Animal Science and Biotechnology (2023) 14:92 https://doi.org/10.1186/s40104-023-00892-7

Journal of Animal Science and Biotechnology

Winery by-products as a feed source with functional properties: dose-response effect of grape pomace, grape seed meal, and grape seed extract on rumen microbial community and their fermentation activity in RUSITEC

Ratchaneewan Khiaosa-ard^{1*}, Mubarik Mahmood^{1,2}, Elsayed Mickdam^{1,3}, Cátia Pacífico^{1,4}, Julia Meixner¹ and Laura-Sophie Traintinger¹

Objectives

The objectives of this study were:

to evaluate the effect of the inclusion of GP in the diet of sheep in the late gestation on composition and immunological quality of colostrum

To investigate if GP affects colostrum microbiome

Materials and methods

- The study was conducted at the experimenral farm of the Dipartimento di Agraria, University of Sassari
- Ewes were kept together in a barn equipped with 10 individual automatic feeding systems (Biocontrol AS, Rakkestad, Norway), and the individual feed intake was daily recorded

Materials and methods

- 21 Sarda dairy sheep in late gestation (13-21 days from partum) were used for the experiment
- The animals were allocated to two groups homogeneous for:
- **Body condition score** (BCS, 3.4 ± 0.1)
- \Leftrightarrow **Body weight** (BW, 62.2 \pm 0.7 kg, mean \pm SD)

CON group

- 11 ewes
- Fed basal diet
- 0 g/d of GP

Grape group

- 10 ewes
- Fed basal diet
- 50 g/d of GP

Materials and methods

Samples collection

Colostrum

and

Blood

ewes

lambs

✓ Collected from each ewe within 12 h after lambing

Analyses:

- IgG (by ELISA test)
- Protein, Fat, lactose, SCC, urea, NaCl, casein, (Milkoscan FT 6000 – Laore Regional Laboratory)
- Fatty acids profile (GC Agilent 100 m column)
- DNA extraction (QIAamp Fast DNA Stool Mini Kit)
- Microbiome analysis NGS (Illumina 16S Metagenomic Sequencing)

- ✓ Ewes within 12 h after lambing
- ✓ Lambs after 24 h from parturition
- ✓ Analyses:
- IgG by ELISA test

Statistical Analysis

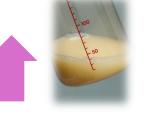
- ✓ Differences in the concentrations of the **colostrum components ad IgG** between groups were analyzed with one-way ANOVA and compared by Tukey test
- ✓ Correlation analysis was performed between IgG content for colostrum and serum samples
- ✓ Microbiome analysis (alpha and beta diversity with Bioconductor package phyloseq
 and DESeq2 package for microbial group differences)

Colostrum composition of control and GP supplemented groups

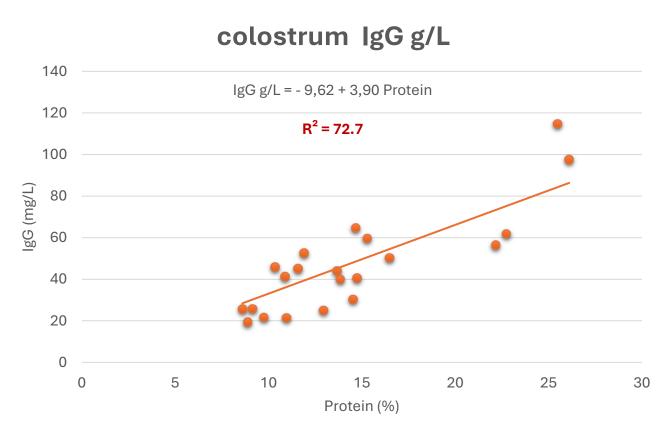
	CON	GRAPE	P-value
Fat, %	10.41	10.69	0.85
Protein, %	13.51	15.60	0.38
Lactose, %	3.34	2.76	0.14
Log SCC,	2.51	2.38	0.68
Urea	58.0	71.1	0.26
pH	5.83	5.66	0.09
NaCl	611	615	0. 95

Fatty acids profile in colostrum

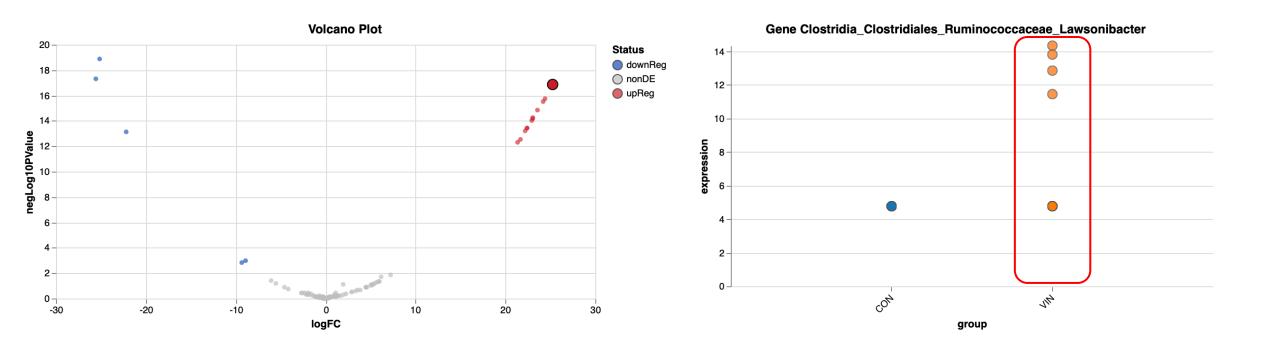
FAME, (g/100 g of FA)	GP	P-Value
C4:0 2.06	1.9	0.760
C10:0 2.37	1.86	0.170
C12:0 2.49	2.23	0.200
isoC13:0 0.011	0.011	0.540
anteisoC13:0 0.036	0.035	0.422
C13:0 0.052	0.040	0.159
isoC14:0 0.058	0.061	0.995
C14:0 13.6	12.8	0.416
isoC15:0 0.127	0.112	0.258
anteisoC15:0 0.181	0.160	0.243
C15:0 0.688	0.570	0.123
isoC16:0 0.184	0.186	0.951
C16:0 33.1	32.4	0.686
isoC17:0 0.378	0.361	0.681
anteisoC17:0 0.501	0.491	0.834
C16:1c9 1.95	1.98	0.453
C17:0 0.79	0.84	0.455
isoC18:0 0.016	0.021	0.012
C18:0 6.31	6.48	0.632
C18:1t11 0.36	0.35	0.821
C18:1c9 25.0	27.2	0.425
C18:2n6 2.07	2.22	0.315
C18:3n6 0.17	0.165	0.825
C18:3n3 0.38	0.42	0.278
CLAc9t11 0.376	0.361	0.997
CLAt9c11 0.009	0.020	0.005
CLAt11t13 0.012	0.018	0.055
EPA 0.046	0.058	0.033
C24:0 0.012	0.009	0.490
DPA 0.140	0.176	0.095
DHA 0.053	0.054	0.600



IgG in colostrum and serum of ewes and lamb of control and GP supplemented groups


	CON	GRAPE	P-value	
Colostrum IgG, g/L	36.5	58.3	0.04	
Serum of ewes IgG, g/L	13.61	15.05	0.53	بالج
Serum of lamb IgG, g/L	22.4	32.8	0.05	

Relationship between Total protein and IgG in colostrum

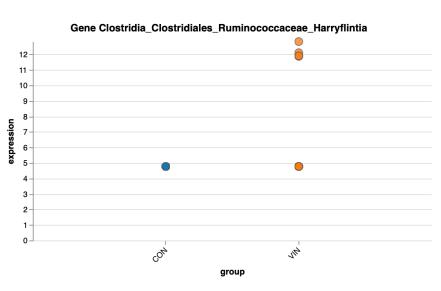


A close correlation was found between Protein and IgG concentration in colostrum.

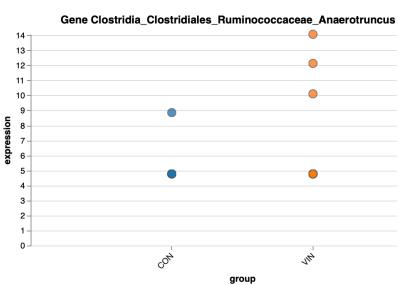
✓ The colostrum samples from GP had higher abundance of genera Lawsonibacter, Harryflintia, Anaerotruncus and Monoglobus, belonging to Ruminococcaceae family, compared to samples from CON

Clostridia Clostridiales Ruminococcaceae Lawsonibacter

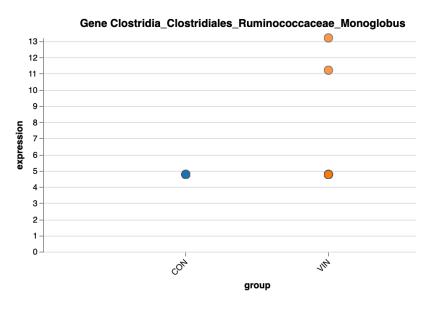
✓ The colostrum samples from **GP** had higher abundance of genera *Lawsonibacter*, *Harryflintia*, Anaerotruncus and Monoglobus, belonging to Ruminococcaceae family, compared to samples from CON


Clostridia Clostridiales Ruminococcaceae family

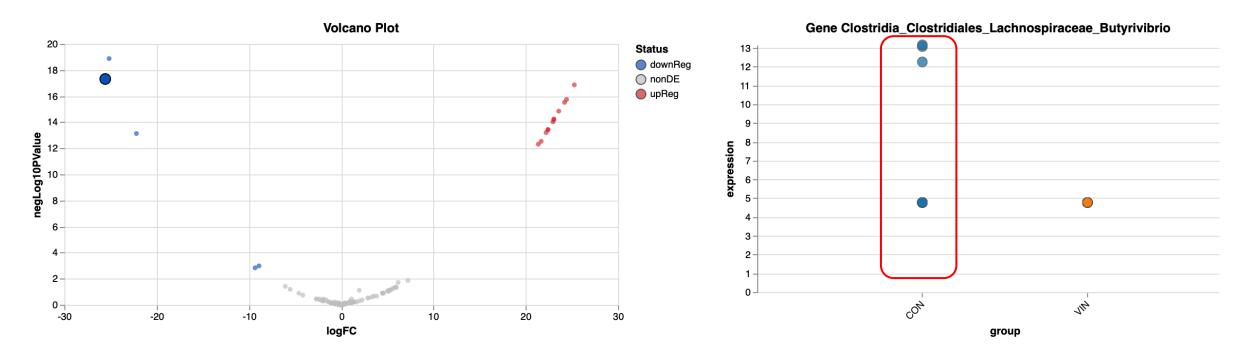
Clostridia Clostridiales Ruminococcaceae family


Clostridia Clostridiales Ruminococcaceae family

Harryflintia

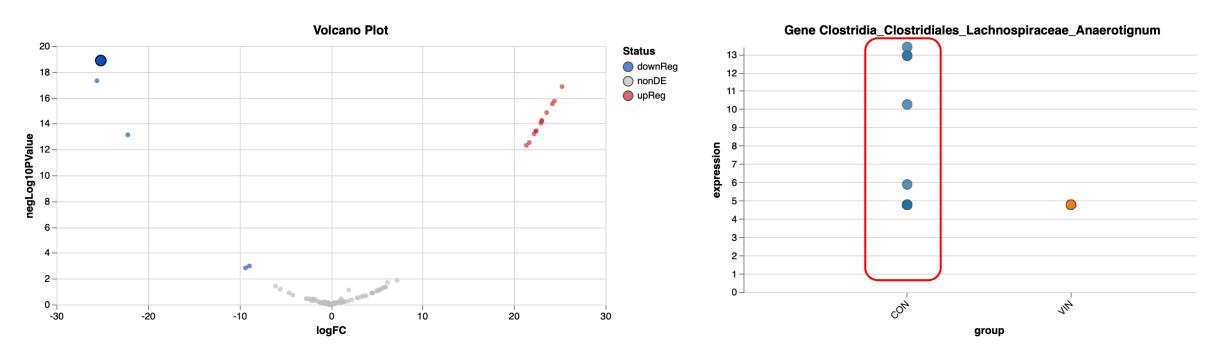


Anaerotruncus


Monoglobus

✓ The genera Butyrivibrio and Anaerotignum, belonging to Lachnospiraceae family, were higher in CON compared to GP

Clostridia Clostridiales Lachnospiraceae


Butyrivibrio

✓ The genera Butyrivibrio and Anaerotignum, belonging to Lachnospiraceae family, were higher in CON compared to GP

Clostridia Clostridiales Lachnospiraceae

Anaerotignum

Conclusions

- ✓ The inclusion of a 50 g/d of GP in late gestation ewes improve IgG content in colostrum and in serum of lambs
- ✓ The gross composition and the FA profile of colostrum was not influence by GP supplementation
- ✓ The microbial analysis of colostrum evidenced variations in the structure of colostrum microbiota of GP group in comparison to CON diet
- ✓ The effect of antioxidant compound during gestation on colostrum quality deserves more studies (e.g. source, dose, and duration of supplementation)
- ✓ The results on IgG observed should be supported by knowledge on mechanism of action of antioxidant compounds included in the diet of late gestation animals

Research funded by NextGenerationEU; PNRR M4C2, CN00000022 AGRITECH.

Anna Nudda: anudda@uniss.it