

Optimizing lactation performance of hyperprolific sows through *Scutellaria baicalensis* supplementation

<u>D. Gardan-Salmon</u>, A. Hamard, F. Robert, J. V. Nørgaard, and T. Feyera

Our expertise, your efficiency

Hyper-prolific sows - late gestation and lactation

Metabolic demand in sow during late gestation and lactation

Insufficient feed consumption and/or tissue mobilization

Accumulation of ROS in the body, placenta and mammary gland Oxidative Stress Inflammation Metabolic stress

Piglet birth weight

→ Milk production

→ Incidence of diseases (mastitis)

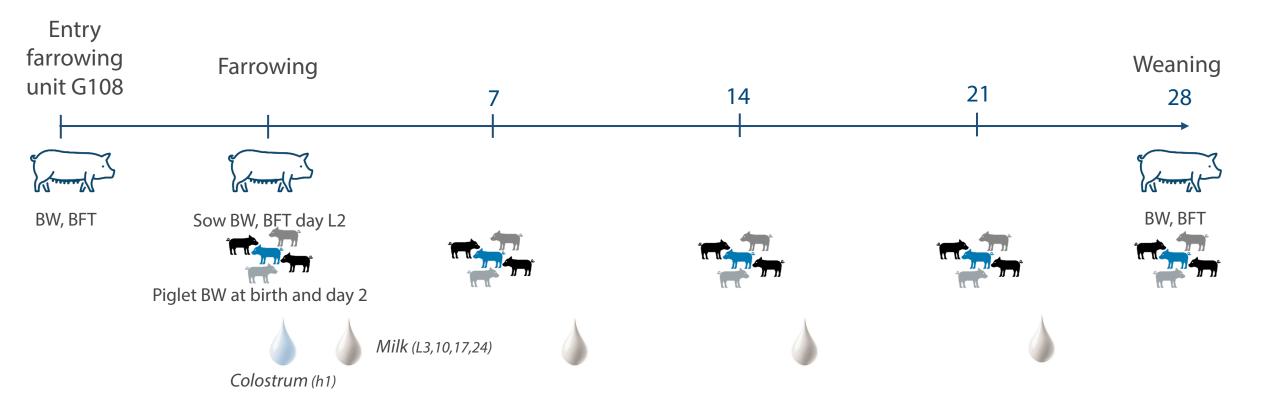
Piglet survival and growth

Scutellaria baicalensis potentials for improving lactation efficiency

- ✓ Scutellaria baicalensis (SB) → bioactive flavonoids such as baicalin and baicalein
- ✓ Anti-inflammatory, antioxidative, and hepatoprotective properties (Yin et al., 2021; Wang et al., 2022)
- ✓ Increased milk yield in dairy cows and antioxydant effects on bovine mammary cells (Olagaray et al., 2019; Perruchot et al., 2019)
- ✓ Stimulation of sow primary mammary epithelial cell proliferation at low dose and \(\subseteq ROS in vitro \((Perruchot et al., 2019 EAAP) \)

Hypothesis

Scutellaria baicalensis (SB) would enhance sow and mammary gland health, leading to improved milk production and piglet growth


Objectives

- Investigate the effects of SB supplementation in sow lactation diet on sow performances and milk production and quality
- Assess the impact on litter survival and growth

Materials and methods

- DanBred Landrace x DanBred Yorkshire sows (2-4 parity)
- Control and *Scutellaria Baicalensis* (SB; 0.2% FeedStim® Sow) (n=12)
- Litters were equalized to 14 piglets/sow, 24-36h after onset farrowing

Materials and methods (2)

- ✓ Sow Feed intake recorded weekly
- ✓ **Litter weight in lactation** calculated weekly from day 2 of lactation (equalization) to weaning
- ✓ **Milk yield** estimated using Hansen *et al.* (2012) prediction model
- ✓ Chemical analyses on colostrum and milk (weekly for milk)
- ✓ Statistical models (SAS, Mixed procedure) included Diet, Parity, Diet * Parity, Week in lactation, Sow as random effect; LSMeans presented

Productive and reproductive performances

✓ No effect of the diet on sow BW, BFT or feed intake (ADFI: 3.7kg end of gestation, 6.93 kg in lactation)


	Control	SB	SEM	Diet
Total born	22.1	23.5	1.16	0.57
Live born	20.9	21	0.87	0.78

✓ No significant effect on the number of live born piglets

Productive and reproductive performances

✓ No effect of the diet on sow BW, BFT or feed intake (ADFI: 3.7kg end of gestation, 6.93 kg in lactation)

	Control	SB	SEM	Diet
Total born	22.1	23.5	1.16	0.57
Live born	20.9	21	0.87	0.78
Piglet birth weight (kg)	1.16	1.26	0.02	0.002
Live born piglet birth weight (kg)	1.19	1.29	0.02	<0.001
Piglet birth weight (equalization) (kg)	1.33	1.43	0.02	<0.001

✓ **Higher birth weight with SB (P<0.001),** in accordance with Fang *et al.* (2023)

Productive and reproductive performances

✓ No effect of the diet on sow BW, BFT or feed intake (ADFI: 3.7kg end of gestation, 6.93 kg in lactation)

	Control	SB	SEM	Diet
Total born	22.1	23.5	1.16	0.57
Live born	20.9	21	0.87	0.78
Piglet birth weight (kg)	1.16	1.26	0.02	0.002
Live born piglet birth weight (kg)	1.19	1.29	0.02	<0.001
Piglet birth weight (equalization) (kg)	1.33	1.43	0.02	<0.001
Litter weight at day 2 of lactation (kg)	20.7	22.4	0.66	0.13
Litter weight at weaning (kg)	104	111	4.1	0.22
Weaning individual weight (kg)	8.66	8.74	0.12	0.47

Sow milk yield and litter performances

						Sow milk	yield	L	itter weig. lactatio	
	Control	SB	SEM	Diet		†			*	
	12.5.7	12.2	0.22	0.06	14			80	*	
Sow milk yield (kg)	12.5 🖊	13.2	0.33	0.06	12			70		
					10			60		
Litter size in lactation	12.6	13.1	0.18	0.08	8			50		
Litter survival in lactation (%)	90.6	93.4	1.24	0.10	6			40		
Litter survivar in factation (%)	90.0	33.4	1.24	0.10				30		
	40.4				4			20		
Litter weight in lactation (kg)	69.6 /	74.1	1.52	<0.05	2			10		
					0 —			0		
						Control	SB		Control	SB

- ✓ **Higher milk yield with SB (P=0.06)** in accordance with Olagaray et *al.*, 2019
- ✓ Trend for higher survival rate with SB
- ✓ Higher litter weight in lactation (P<0.05)
 </p>

Colostrum and milk concentrations

	Control	SB	SEM	Diet
Colostrum, %				
Fat	4.65	5.19	0.32	0.2
Protein	20.4 🔰	18.2	0.55	<0.01
Lactose	3.4 🖊	3.56	0.05	<0.05
Solid not fat	23.2 🔰	21.4	0.48	<0.01
Dry matter	29.6	28	0.68	0.09

✓ Colostrum

Higher % of lactose and lower % protein with SB

Colostrum and milk concentrations

	Control	SB	SEM	Diet
Colostrum, %				
Fat	4.65	5.19	0.32	0.2
Protein	20.4	18.2	0.55	< 0.01
Lactose	3.4 7	3.56	0.05	<0.05
Solid not fat	23.2 🔰	21.4	0.48	< 0.01
Dry matter	29.6	28	0.68	0.09
Milk, %				
Fat	7.14 🔰	6.63	0.14	<0.01
Protein	5.0	5.06	0.05	0.22
Lactose	5.08	5.09	0.02	0.80
Solid not fat	11.3	11.3	0.05	0.82
Dry matter	18.1 🔽	17.6	0.14	<0.05

✓ Colostrum

Higher % of lactose and lower % protein with SB

✓ Milk

- Lower % of fat (Ariza-Nieto et al., 2011; Herve et al., 2023)
- No difference in % protein and lactose
- o Improved milk yield in SB group associated with no change in protein and lactose, suggests better intake in piglets, and higher growth in SB (Hojgaard *et al.*, 2020)

Conclusion

- Supplementation with Scutellaria baicalensis in sows increased:
 - ✓ Piglet weight at birth
 - ✓ Sow milk yield
 - ✓ Litter growth during lactation
- Positive impact of Scutellaria baicalensis on improving lactation efficiency in hyperprolific sows
- Further research needed to better understand the mecanisms by which SB impacts:
 - Fetal development on late gestation
 - Milk composition

Optimizing lactation performance of hyperprolific sows through Scutellaria baicalensis supplementation

D. Gardan-Salmon, A. Hamard, F. Robert, J. V. Nørgaard, and T. Feyera

Thank you for your attention

