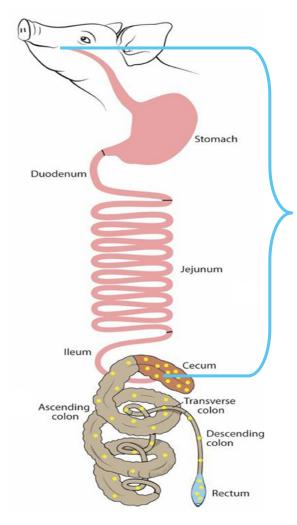


Oro-caecal transit time measured with the lactose-¹³C-ureide breath test, in pigs fed high and low fibre diets

M. Cavalleri¹, Q. L. Sciascia¹, S. Görs¹, S. Dänicke², C. C. Metges¹

¹Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

²Federal Research Institute for Animal Health, Braunschweig, Germany



75th EAAP ANNUAL MEETING

04/09/2024

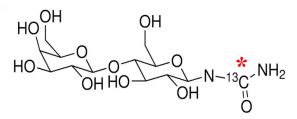
Background

OCTT

Oro-caecal transit time:

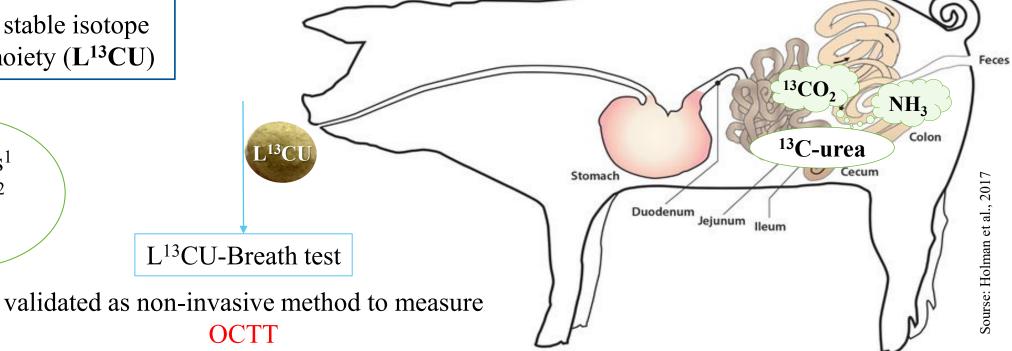
The time elapsed for the digesta to transit from mouth to caecum

INVASIVENESS


Cannulation of different gut segments (duodenal, distal ileum or caecal)

Source: Schaaf CR and Gonzalez LM (2022)

Lactose-¹³C-ureide


Lactose-ureide¹

labelled with the stable isotope ¹³C on the urea moiety (L¹³CU)

Humans¹

• Urease: NH₃ and ¹³CO₂

• ¹³CO₂ exhaled with breath

• Bacterial glucose-ureide hydrolase: Liberation of ¹³C-urea

Horses²
Rats³

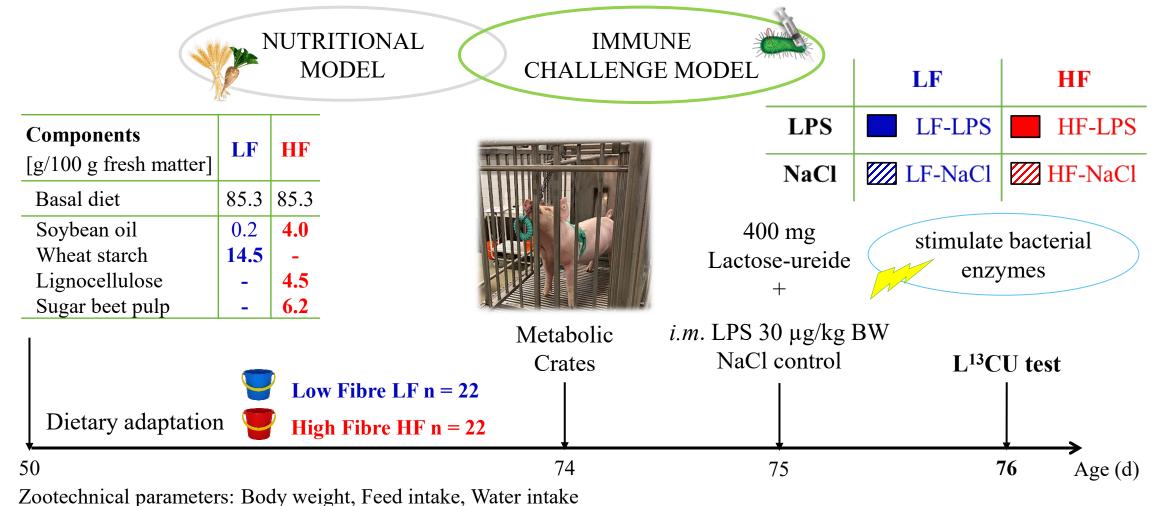
¹Geypens et al., 1999 ²Sutton et al., 2011

³Uchida and Yoshida, 2009

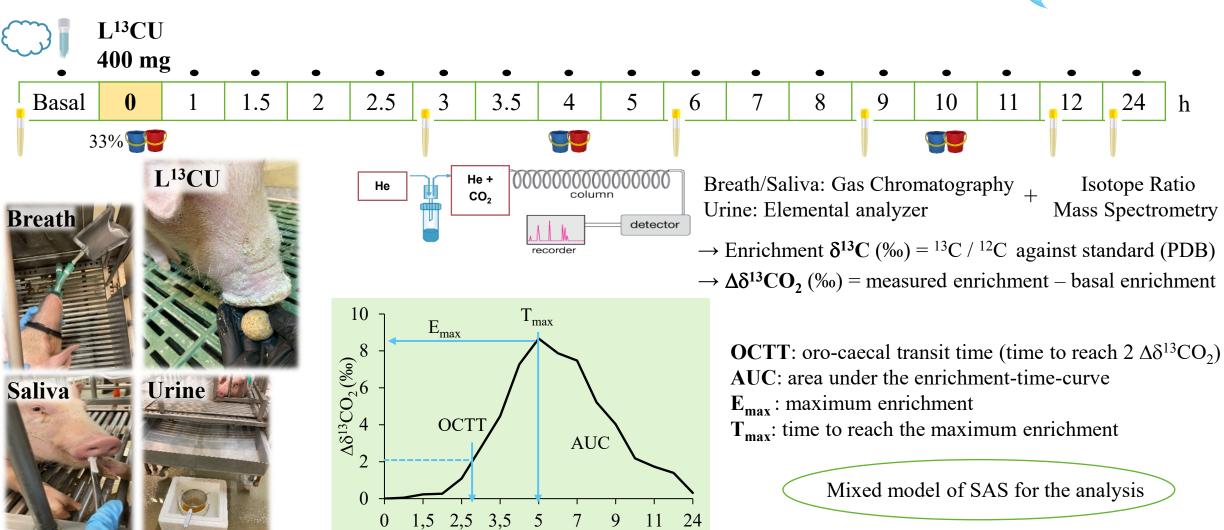
Aims

1. Measure the OCTT using L¹³CU and ¹³CO₂ in breath samples

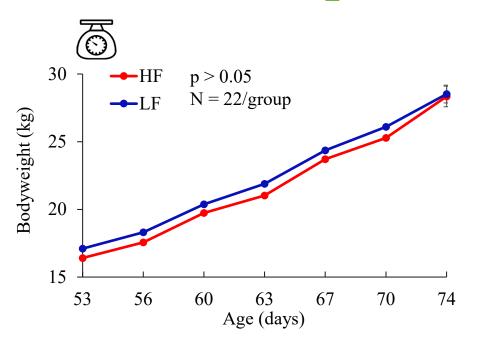
2. Measure the OCTT using $L^{13}CU$ and $^{13}CO_2$ in saliva samples

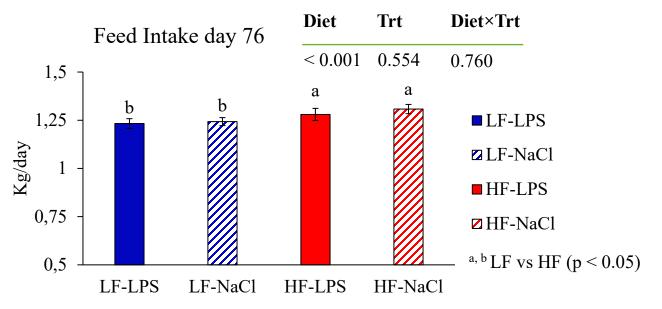

3. Compare breath and saliva to assess the use of saliva as minimally invasive sample as a replacement for breath

4. Investigate whether measuring OCTT with L¹³CU test reflects the effects of dietary fibre and immune stimulation (LPS) in pigs


Experimental design

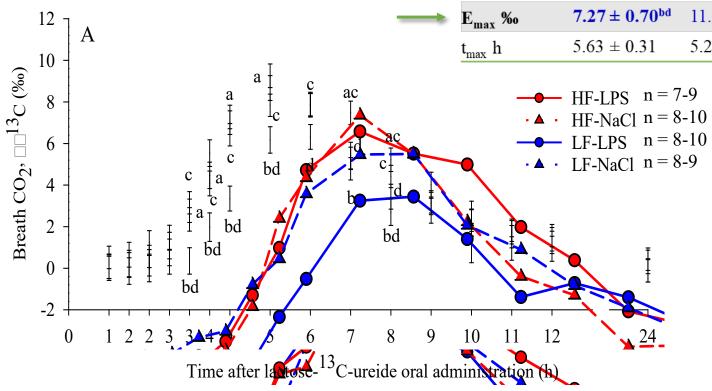
Lactose-¹³C-ureide test



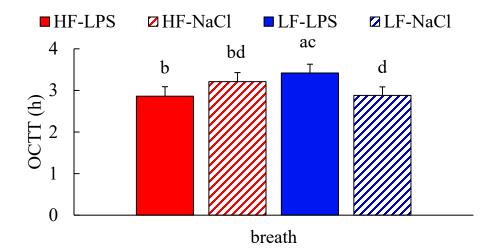


Time (h)

Zootechnical parameters



	Low Fibre		High Fibre		P-value		
	LPS	NaCl	LPS	NaCl	Diet	Trt	Diet×Trt
N	8-10	8-9	7-9	8-10	Diet	111	Diet^ II t
Water intake (L/d)	3.67 ± 0.23	4.08 ± 0.52	3.56 ± 0.35	3.55 ± 0.25	0.460	0.743	0.923
Energy intake (MJ/d)	18.9 ± 0.39	19.0 ± 0.32	18.6 ± 0.46	19.0 ± 0.35	0.116	0.554	0.760

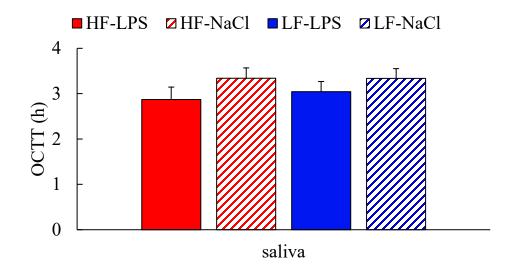

L¹³CU test: Breath ¹³CO₂

					Low Fibre		High Fibre		P-value	
					LPS	NaCl	LPS	NaCl	Trt	Diet×Trt
				AUC ‰·h	45.7 ± 2.9	46.7 ± 2.6	48.6 ± 2.8	46.4 ± 2.6	0.802	0.517
12 7			\longrightarrow	E _{max} ‰	$7.27 \pm 0.70^{\mathrm{bd}}$	$11.9 \pm 0.75^{\circ}$	9.68 ± 0.65^{a}	$9.86 \pm 0.61^{\text{ac}}$	< 0.01	< 0.01
10 - A				t _{max} h	5.63 ± 0.31	5.20 ± 0.30	5.00 ± 0.33	5.16 ± 0.32	0.647	0.291
% IV	a [c			_					

Diet	Trt	Diet×Trt
0.505	0.591	< 0.05

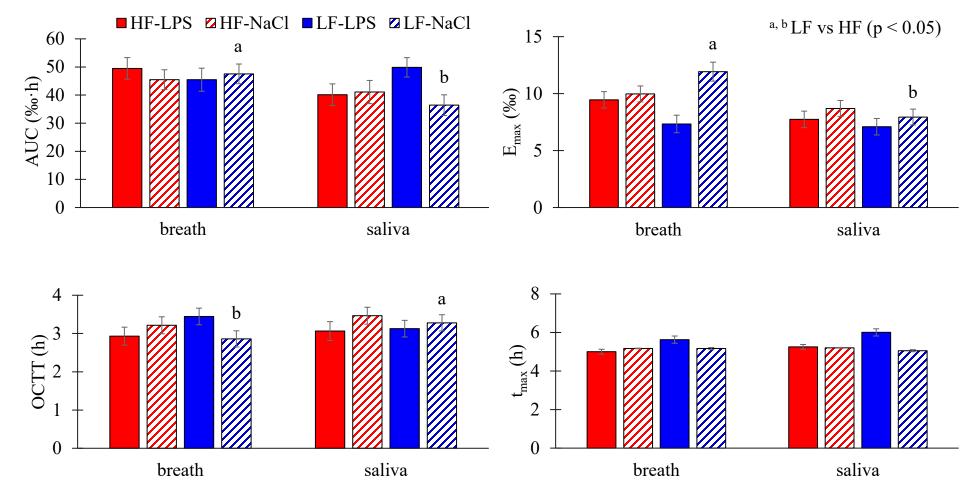
^{a, b} LF vs HF, within same treatment Trt (p < 0.05)

 $^{^{}c, d}$ NaCl vs LPS, within same diet (p < 0.05)


L¹³CU test: Saliva ¹³CO₂

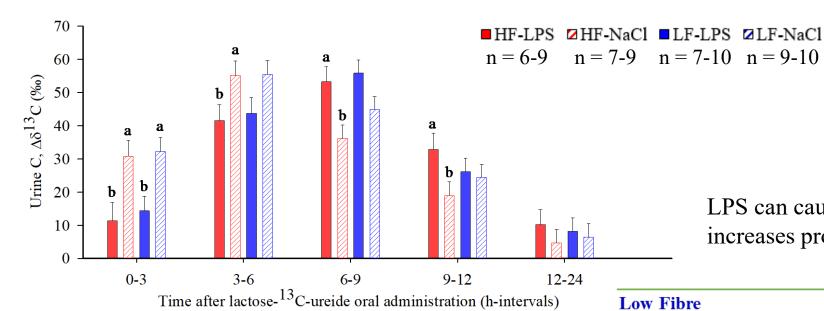
		ACC 700 H	2012 - 112
12 7		E _{max} ‰	7.12 ± 0.87
B		t_{max} h	5.95 ± 0.34
Saliva CO ₂ , $\Box\Box_{13}$ C (‰) 8 - 8 - 8 - 8 - 4 - a a f 1 I J T T T T T T T T T T T T T T T T T T		HF-I HF-N LF-L	$NaC1 \ n = 8-10$
$0 - \begin{bmatrix} b_{1} & b_{2} & b_{3} \\ \vdots & \vdots & \vdots \\ b_{m} & b_{m} & b_{m} \end{bmatrix}$		‡ ‡ ‡	Ī
-2		1 1	
0 1 2 2 3	3 4 4 5 7 8 9	11 12	24
	Time after lattose-13C-ureide oral admin	stration (h)	

	Low Fibre		High Fibre		P-value	
	LPS	NaCl	LPS	NaCl	Trt	Diet×Trt
AUC ‰·h	$50.9 \pm 4.3^{\rm ac}$	34.9 ± 4.6^d	$40.0 \pm 4.8^{\mathrm{ad}}$	40.1 ± 5.2^{ad}	0.106	0.102
E _{max} ‰	7.12 ± 0.87	7.85 ± 0.75	7.86 ± 0.80	8.69 ± 0.75	0.304	0.944
t _{max} h	5.95 ± 0.34	5.17 ± 0.41	5.19 ± 0.36	5.14 ± 0.34	0.251	0.314



 $^{^{}a, b}$ LF vs HF, within same treatment Trt (p < 0.05)

 $^{^{}c, d}$ NaCl vs LPS, within same diet (p < 0.05)


L¹³CU test: Breath ¹³CO₂ vs Saliva ¹³CO₂

L¹³CU test: Urine ¹³C

LPS can cause liver or kidney impairment and increases protein breakdown and nitrogen loss as urea¹

NaCl

 77.4 ± 26.3

P-value

Diet

Time

Trt

	Urea mmol/L	ı				0.635	< 0.001 < 0.001
	Overnight	225 ± 24.2°	106 ± 24.2^{d}	201 ± 25.5°	104 ± 30.6^{d}		
	0-3 h	198 ± 24.8°	73.9 ± 24.7^{d}	132 ± 27.8	86.7 ± 25.5		
	3-6 h	149 ± 26.2^{b}	96.0 ± 25.3	246 ± 26.1ac	91.5 ± 26.8^{d}		
)	6-9 h	204 ± 24.2°	125 ± 24.9 ^d	244 ± 25.5°	134 ± 25.5^{d}		

LPS

NaCl

 64.3 ± 26.1

LPS

 133 ± 24.2

9-12 h

High Fibre

^{a, b} LF vs HF, within same treatment Trt (p < 0.05) ^{c, d} NaCl vs LPS, within same diet (p < 0.05)

¹Doi et al. 2009

WWW.PIGWEB.EU 11

149 ± 26.3

Discussion and conclusions

Starch (faster transit)

Soluble fibre (slower transit in the upper gut)

Insoluble fibre (faster transit in the upper gut)¹

LPS induces delayed gastric emptying and has inhibitory effects on gastrointestinal motility (Rats/Canine/Human studies)²

No differences in OCTT

LF-NaCl (2.9 \pm 0.2 h)

HF-NaCl $(3.2 \pm 0.2 \text{ h})$

- Method limitation
- Fibre inclusion

Differences in OCTT

LF-LPS $(3.4 \pm 0.2 \text{ h})$

LF-NaCl (2.9 \pm 0.2 h)

HF-LPS $(2.9 \pm 0.2 \text{ h})$

Fibre "protective" effect over LPS

- \triangleright OCTT can be measured in pigs using L¹³CU using breath and saliva samples
- ➤ Saliva ¹³CO₂ was less sensitive than breath
- > The method could be a potential proxy for monitoring the gut health of pigs

¹Ratanpaul et al., 2019 ²De Winter and De Man, 2010

8th EAAP International Symposium on Energy and Protein Metabolism and Nutrition (ISEP 2025)

15 – 18 September 2025 Rostock-Warnemünde, Germany

Questions Opinions Comments ?

Thank you for the attention!

Forschungsinstitut für Nutzierbiologie

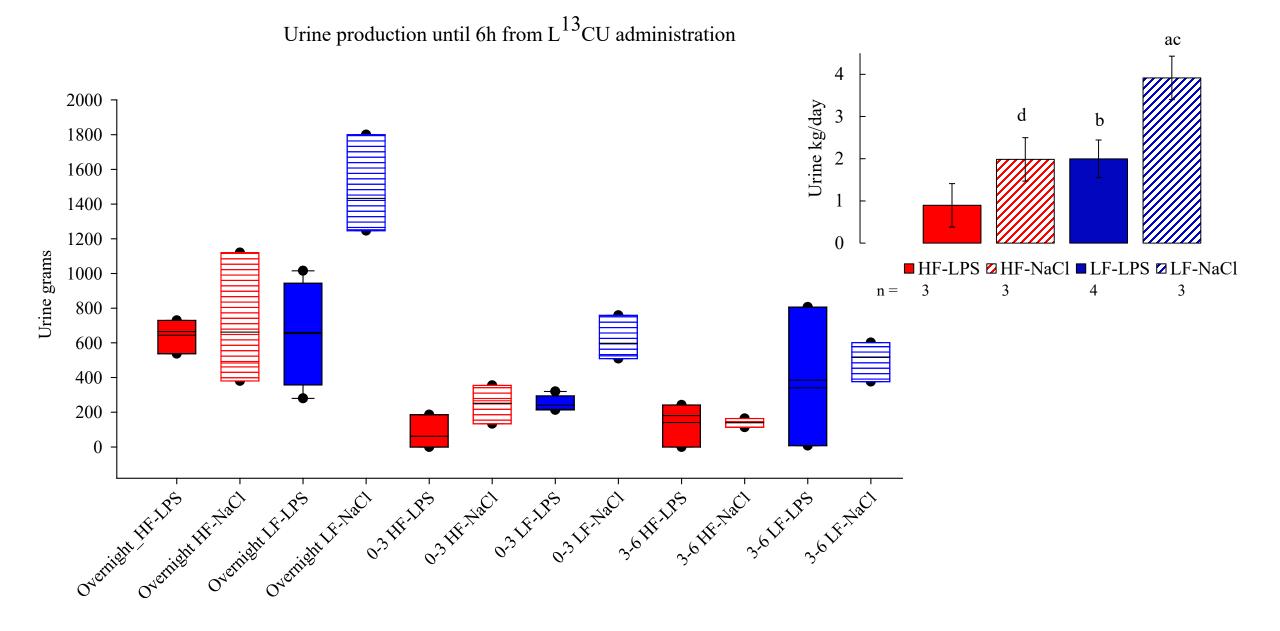
Wilhelm-Stahl-Allee 2 18196 Dummerstorf, Germany

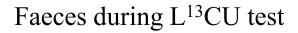
Contact

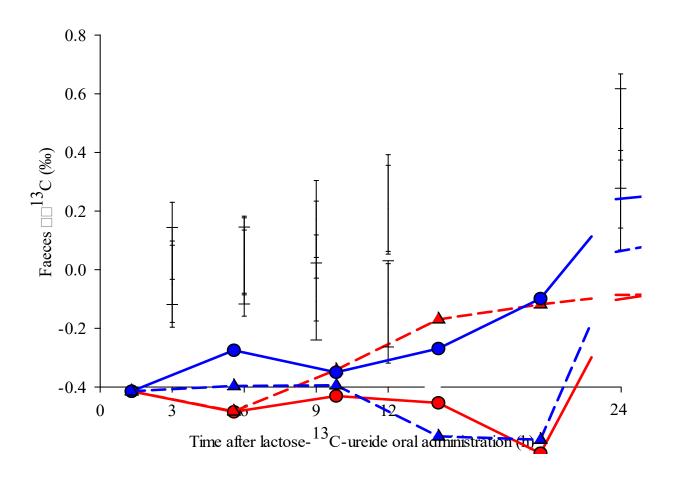
Cavalleri Mariagrazia E-Mail: cavalleri@fbn-dummerstorf.de

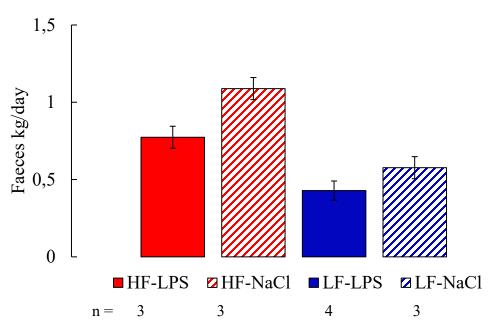
The PIGWEB project has received funding from European Union's Horizon 2020 research and innovation program under Grant Agreement No 101004770.

Table: Urine and faeces production, ¹³C and nitrogen balance of 76 d pigs during the L¹³CU test¹


Items	Low Fibre		High Fibre		P-value ²	
	LPS	NaCl	LPS	NaCl	Diet	Trt
Faeces, g/d	429 ± 61.9 ^b	577 ± 71.4 ^b	774 ± 71.4 ^{ad}	1089 ± 71.4ac	< 0.001	< 0.01
Urine, g/d	1997 ± 446 ^d	3915 ± 515^{ac}	895 ± 515	$1984 \pm 515^{\rm b}$	< 0.05	< 0.05
¹³ C balance, g/d	1.68 ± 0.33	1.57 ± 0.38	1.60 ± 0.38	1.81 ± 0.38	0.829	0.889
Ingested N, g/d	31.4 ± 0.57^{b}	32.2 ± 0.66^{b}	38.6 ± 0.66^{a}	39.5 ± 0.66^{a}	< 0.001	0.196
Faecal N, g/d	5.07 ± 0.77	6.20 ± 0.89^{b}	6.97 ± 0.89	9.24 ± 0.89^{a}	< 0.05	0.081
Faecal N/Ingested N, %	16.0 ± 2.28	19.3 ± 2.63	18.1 ± 2.63	23.4 ± 2.63	0.253	0.128
Urine N, g/d	$8.93 \pm 0.76^{\circ}$	6.26 ± 0.88^{d}	7.11 ± 0.88	5.91 ± 0.88	0.234	< 0.05
Urine N/Ingested N, %	28.6 ± 2.36^{ac}	19.4 ± 2.72^{d}	18.4 ± 2.72^{b}	15.0 ± 2.72	< 0.05	< 0.05
N excreted, g/d	14.0 ± 0.65	12.5 ± 0.75^{a}	14.1 ± 0.75	15.1 ± 0.75^{b}	0.087	0.744
Urine N : Faecal N	2.09 ± 0.34	1.12 ± 0.39	1.02 ± 0.39	0.65 ± 0.39	0.072	0.108


¹Values are least-square means \pm standard error of the mean: LF-LPS n = 4; LF-NaCl/HF-LPS/HF-NaCl n = 3


 $^{{}^2}F$ -test, Diet × Trt interaction was not significant (P > 0.1)


^{a,b}Values with different superscripts within row differ between diets within treatment (P < 0.05)

 $^{^{}c,d}$ Values with different superscripts within row differ between treatments within diet (P < 0.05)

