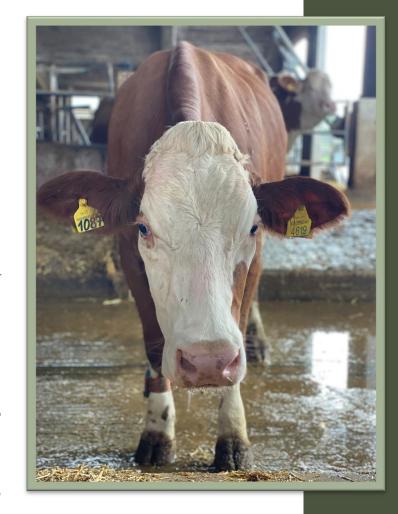


Assessment of methane emission in a Simmental dairy farm


Cristina Pavanello, Alberto Romanzin, Marcello Franchini, Mirco Corazzin

Università degli studi di Udine, Dipartimento di scienze Agroalimentari, ambientali e animali, Italia

pavanello.cristina@spes.uniud.it

Introduction

- Methane is the most produced gas in dairy farms
 - 30% of the total emissions of the agricultural sector.
- The production of this gas may be influenced by:
 - Animal individuality (e.g., age, lactation stage, behaviour)
 - Herd management practices (e.g., feeding system, diet)

Need to assess this greenhouse gas

Introduction

Assessing and measuring methane frequently presents difficulties

• The existing protocols for gas evaluation are neither entirely clear nor precise

• Specialized equipment, often expensive, is required

• It becomes necessary to identify methods that can predict methane emissions as closely to reality as possible

Introduction

• Methane production in the rumen is associated with the formation of specific fatty acids that are transferred to the milk and can serve as indicators of CH₄ production.

• Estimation equations based on the fatty acidic profile of milk have sparked interest.

• A recent review by Massaro et al. (2024) found a total number of 6 equation for the estimation of the methane intensity for kg of fat and protein corrected milk (CM).

Aims

- a) Measure methane emissions from Simmental cows of different ages;
- b) Estimate methane emissions using one prediction equation that considers milk fatty acids;
- c) Compare measured methane emissions (MME) with estimated methane emissions (EME).

Material and Methods

14 Simmental dairy cows:

• 7 primiparous (P)

• 7 multiparous (M): third and later parities

Days in milk: 90-215

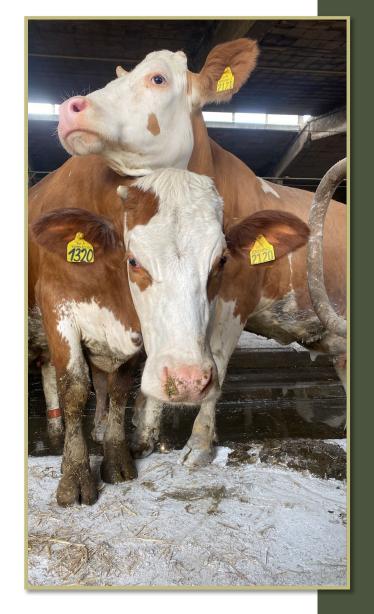
Characteristics of the groups did not display significant differences (P>0,05)

	Body Condition Score	Dry Matter Intake (kg/day)	Milk (kg)	% Protein	% Fat
P	$3,61 \pm 0,3$	21,6 ± 1,9	$28,8 \pm 2,2$	$3,3 \pm 0,34$	4 ± 0,07
M	$3,61 \pm 0,3$	25,6 ± 1,9	$27,9 \pm 2,9$	$3,4 \pm 0,2$	$3,9 \pm 0.8$

Methane Measurement

Material and Methods

- The trial lasted for 3 days
- *CH*₄ concentration (ppm-m) in breath was measured twice a day with the LaserMethaneSmart®
- 5 minutes at 1 m distance
- During feeding
- The conversion of methane ppm-m to g/day was carried out using the formula by Sorg et al. (2019).



Fatty Acids analysis

- Milk samples at the third day of measurements
- Determine the fatty acid profile (FA) Feng et al. (2014):
 - Lipid extraction from cream
 - Extracted FA were methylated to convert into fatty acid methyl esters (FAME)
 - FAME were detected in GCMS equipped with HP-88 (100 m).

Material and Methods

Material and Methods

Prediction equation:

$$\frac{\mathit{CH}_4(g)}{\mathit{Corrected\ Milk\ (kg)}} = 21,13 - 1,38 * \mathit{C4} : 0 + 8,53 * \mathit{C16} : iso - 0,22 * \mathit{C18} : 1\mathit{c9} - 0,59 * \mathit{C18} : 1t10 + t11$$

• Fatty acids:

- C4:0 Butyric acid
- C16:iso Palmitic acid
- C18:1c9 Oleic acid
- C18:1t10+t11 Elaidinic acid

(Van Lingen et al. 2014)

• Statistical analysis:

- One-Way ANOVA: compare variables
- Shapiro-Wilk test: normality of data
- Pearson correlation: relationship between variables

Results

Means and Standard Error of the FA of the two experimental groups (%)

	Primiparous		Multiparous	
	Mean	SE %	Mean	SE %
C4:0	4,32	0,14	4,45	0,08
C16:0 iso	0,25	0,02	0,30	0,02
C18:1 trans10	0,49	0,04	0,45	0,05
C18:1 trans11	0,98	0,05	1,10	0,13
C18:1cis9	18,56	0,58	18,80	1,04

- Informative FA similar between P and M
- No significant difference (P> 0,05)

	Primiparous		Multiparous	
	Mean	SE	Mean	SE
Corrected milk (kg)	33,4	1,7	38,3	2,0
CH ₄ g/day	314,5	10,4	304,2	20,7
CH ₄ g/kg CM	9,5	0,5	8,0	0,5

- Average of methane yield per cow $309,3 \pm 41,9$ g/day
- Average of methane per kg of CM $8,76 \pm 1,45$ g/kg
- Similar emissions between groups (P>0,05)

	Primiparous		Multiparous	
	Mean	SE	Mean	SE
Corrected milk (kg)	33,4	1,7	38,3	2,0
CH ₄ g/day	412,1	25,2	478,3	25,1
CH ₄ g/kg CM	12,3	0,3	12,5	0,3

- Average of methane per kg of CM 12,42 \pm 0,85 g/kg
- Average of methane yield per cow $445,2 \pm 72,5$ g/day
- Similar emissions between groups (P>0,05)

MME vs. EME

	MME		EME		
	Mean	SD	Mean	SD	
g CH ₄ / kg CM	8,8	1,4	12,4	0,9	
g CH ₄ / day	309,3	41,9	445,2	72,6	

NO CORRELATION

between the variables (r=0,24; P>0,05)

Mean difference EME and MME 135,91 g/day (CI from 96,51 to 175,31 g/day)

SIGNIFICANT
DIFFERENCE between
EME and MME

• There is no correlation between the EME and MME

• There is a significant difference between EME and MME, with EME consistently higher than MME

• The results indicates that the relationship between the two variables should be further investigated to have definitive results

• It is preferable to consider measured data rather than data derived from predictions

• It is necessary to develop equations that more closely approximate actual methane production

• Measurement and conversion protocols for methane should also be reviewed, reassessed, and made accessible and adaptable to different categories of animals of different ages

THANK YOU FOR THE ATTENTION

Le Tenute, marianis

Work funded by Agritech National Research Center and received funding from the European Union Next-GenerationEU and with PNRR M4C2, DM352/2022