Can insects be safely reared on residual streams?

Elise F. Hoek – van den Hil

4 September 2024, EAAP

General introduction

- Why insect rearing on residual streams?
- Is it safe?

Substantiate safety for EU legislation

Insects and residual streams

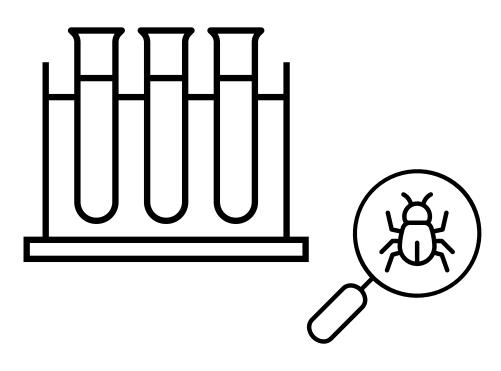
- Black Soldier Fly (Hermetia illucens)
- Mealworm (Tenebrio molitor)

What about food safety?

Chemical + microbiological analyses of substrate, larvae, frass samples

Broiler manure (BM)
Category 2 meat meal

Household (kitchen) waste



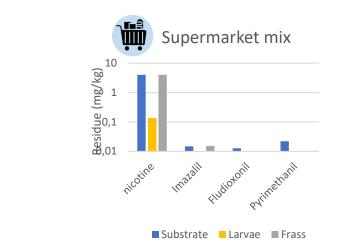
Supermarket mix

Chemical safety

- Heavy metals
- Pesticides
- Dioxins and PCBs
- Antibiotics and coccidiostats

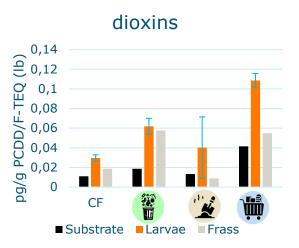
(Heavy) metals

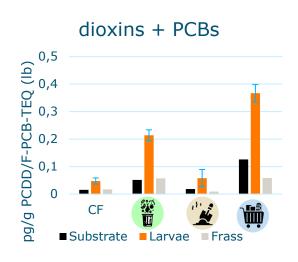
- Legal limits in feed for Cd, Hg, Pb, As: not exceeded in any larval samples
- Bioaccumulation: cadmium in BSFL
- Broiler manure samples: overall highest for all elements

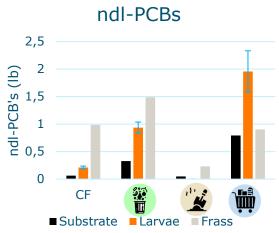

Pesticides

Residue (mg/kg)

- Pesticide residues detected only in control, kitchen waste and supermarket mix
- Nicotine very high in SW substrate (~2 mg/kg)
 - Tobacco residues?
- Lower yields caused by pesticide residues?

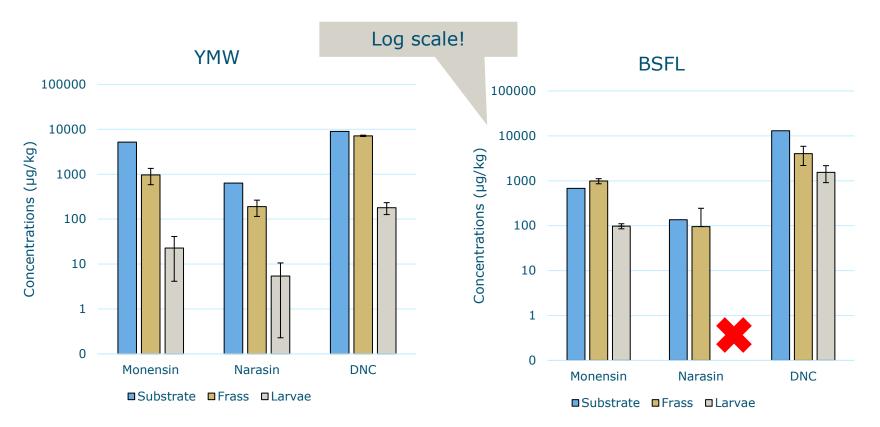




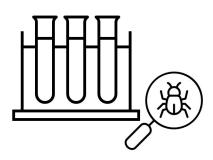


Dioxins

- Some accumulation, all concentrations below legal limits
- Larval concentrations below legal limits (Regulation (EU) 2023/915)


Antibiotics and coccidiostats in broiler manure

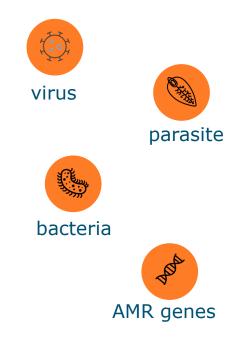
- Veterinary medicine: administered to treat disease, requires veterinary prescription
- Coccidiostats: feed additive to treat parasitic disease in poultry, preventative: monensin, narasin, DNC detected
- Legal limits for carry-over of coccidiostats in food and feed: exceeded for all larval samples
 - Except narasin BSFL (<LOQ)


Coccidiostats in broiler manure

Chemical safety

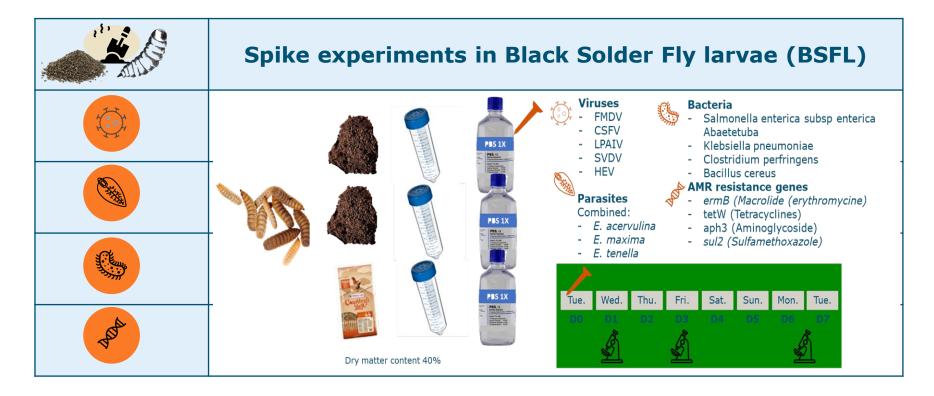
 Pesticides more likely to be in vegetable-based organic residual streams (kitchen waste/supermarket mix)

- Some accumulation dioxins, heavy metals in the larvaebut concentrations generally below legal limits
- Concentrations coccidiostats in broiler manure very high; transfer problematic



Microbiological safety – residual streams

- Transmission of pathogens from residual streams to animals
- Do they remain infectious?

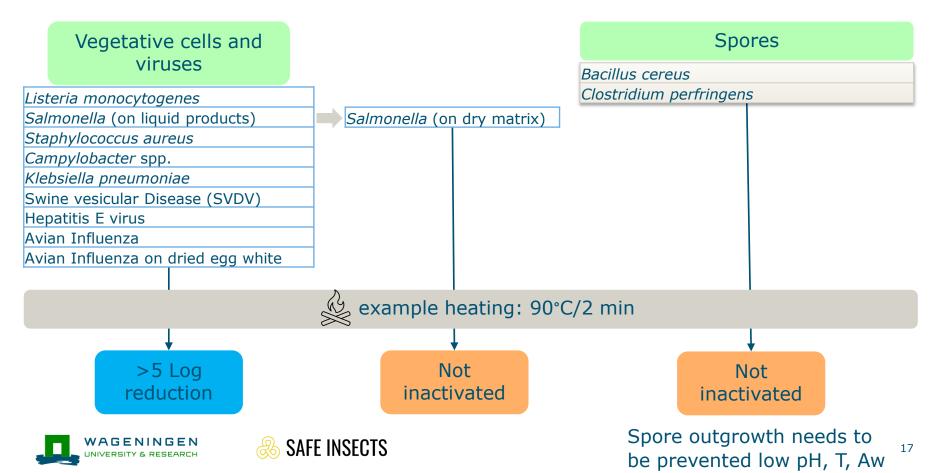

Pathogens in residual streams?

Virus	Perhaps	Perhaps	Perhaps
Parasite	Perhaps Yes	Perhaps Yes	Yes
Bacteria	Yes	Yes	Yes
AMR genes	Yes	Yes	Yes

Do they remain infectious in insects?

Do tested pathogens remain infections in BSFL?

	Main results
	 rapid inactivation of virus in broiler manure only SVDV recovered from BSFL on day 1
	Eimeria: oocysts isolated from BSFL on day 7
	 K. pneumonia and B. cereus: no decline S. enterica and C. perfringens: decline
A Bas	Tested AMR genes were persistently present


Microbiological safety

- Main concerns
 - Food: food-borne pathogens, spore-forming bacteria
 - Feed: viruses (ban on swill feeding) and prions (TSE regulation)
- Microbiological analysis: Cat2 material most safe; possible issues with spore-formers, C.
 perfringens and B. cereus in some other residual streams
- Nuance: different batches may contain different types / concentrations of micro-organisms
- Spike experiments
 - K. pneumonia and B. cereus found in the larvae
 - Most viruses rapidly inactivated in BM, not detected in BSF except SVDV
- RA: very low levels of BSE exposure of cattle from substrates for insect production

Inactivation of the relevant microorganisms

To conclude

- Is insect rearing on residual streams safe?
 - Residual stream
 - Insect species
 - Feed or food
 - Microbiological and chemical hazards

Conclusions

Broiler manure

Cat 2 meat meal

Kitchen waste

- Contains (heavy)
 metals,
 coccidiostats,
 possibly other
 veterinary
 medicines
- Severe heattreated resulting in low microbiological contamination
- Assumed to be food grade: but can contain variety of contaminants; control / traceability difficult

- Processing reduces microbiological risk in most cases
- Very low levels of BSE infectivity to cattle (for each substrate)

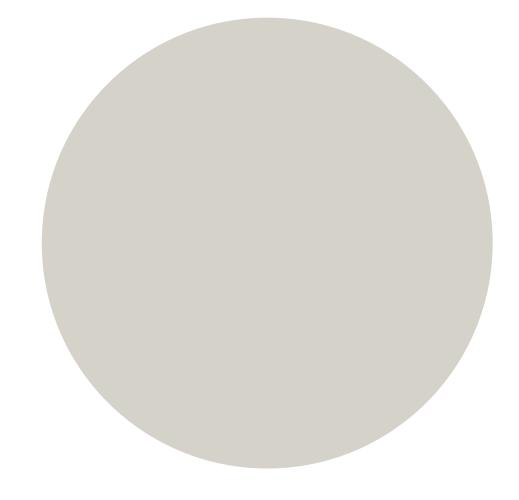
Acknowledgements

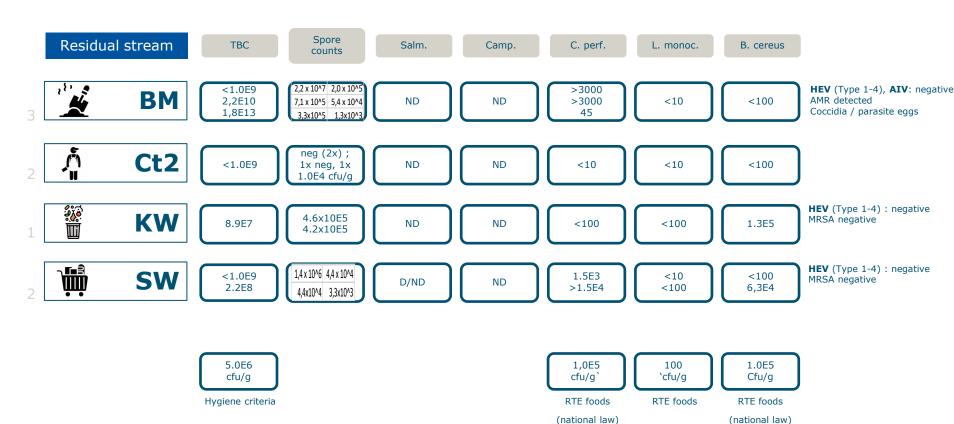
Thanks to all my colleguaes and partners within the project Safe Insects

Nathan Meijer, Winnie Tao, Kristian Zadelhoff, Yvette Hoffmans, Marko Appel, Adriaan Antonis, Clazien de Vos, Olga Haenen, Marieke Bruins, Anita Dame, Jan Boonstra, Helmi Fijten, Hasmik Hayrapetyan, Marieke Bruins, Teun Veldkamp, Somaya Naser El Deen

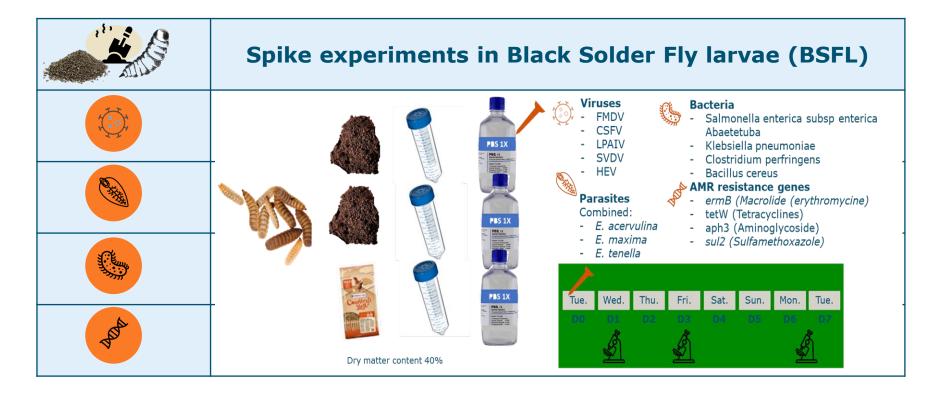
Project partners:

enik




Project SAFE INSECTS is financed by TKI AgriFood that is funded by the ministry of LVVN and partners of the project

Microbial hazards


PO | Could these pathogens remain infectious?

	Yes	Yes	NA	Yes, but
	Yes	Yes	NA	Yes
	Yes	Yes	NA	Yes, but
The state of the s	Yes	Yes	NA	Yes

PIPO → do they remain infectious in insects?

Spiked pathogen (infectious dose/ml)

DPI	0	B	ı	B	3	B	7
Control feed CF		VIII TO		ATTILL S		OTT LES	
BM Negative control							
BM Spiked							
BSFL							

Foot & mouth disease virus (10⁶ TCID₅₀/ml)

DPI	0	S	1		3		7
Control feed CF	Neg.	Neg.	Neg.	Neg.	Neg	Neg.	Neg.
BM Negative control	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BM Spiked	104,1	Neg.	102,4	Neg.	Neg.	Neg.	Neg.
BSFL	Neg.						

Avian influenza virus (10⁶ TCID₅₀/ml)

DPI	0	S	1	B	3		7
Control feed CF	Neg.	Neg.	Neg.	Neg.	Neg	Neg.	Neg.
BM Negative control	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BM Spiked	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BSFL	Neg.	No	o <u>infectiou</u>	<u>ıs</u> virus, b	out PCR po	ositive!	

Swine vesicular disease virus (10⁶ TCID₅₀/ml)

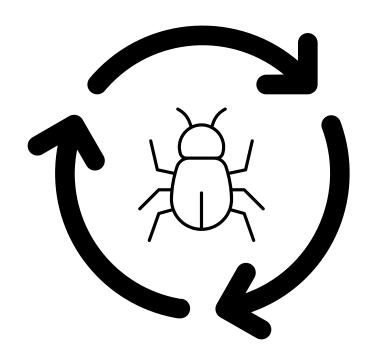
DPI	0		1	S	3		7
Control feed CF	Neg.	Neg.	Neg.	Neg.	Neg	Neg.	Neg.
BM Negative control	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BM Spiked	106,4	104,86	10 ^{5,7}	Neg.	Neg.	Neg.	Neg.
BSFL	Neg.						

Klebsiella pneumoniae (3,6x10^9)

DPI	0		l	ß	3		7
Control feed CF	Neg.	3.1 E5	Neg.	3.2 E5	E5*	E4*	E4*
BM Negative control	Neg.	E4*	E4*	E4*	E1*	E4*	E1*
BM Spiked	2.6 E9	3.5 E7	1.8 E7	E7/E8*	E5	E8*	E7*
BSFL	2.6 E5						

Salmonella enterica subsp enterica abaetetuba (9,0x10^9)

DPI	0				3		7
Control feed CF	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BRM Negative control	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
BRM Spiked	4.0 E9	3k -7 10k -5	3.0 E9	E6*	E6*	1.0 E2	2.0 E2
BSFL	Neg.						

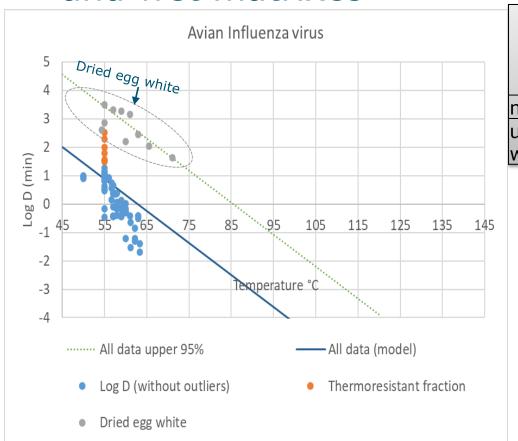


Eimeria (maxima, tenella & acervulina) | OPG

DPI	0		1		3		7
Control feed	0	0/0	0	0/0	0	0/0	0
CF	21A	21C	21B	21E	21D	21G	21F
BM	0	0/0	0	0/0	0	0/0	0
Negative control	22A	22C	22B	22E	22D	22G	22F
BM	113867	0/0	4247	0/0	8820	33/167	21920
Spiked	23A	23C	23B	23E	23D	23G	23F
BSFL	0/0 24A						

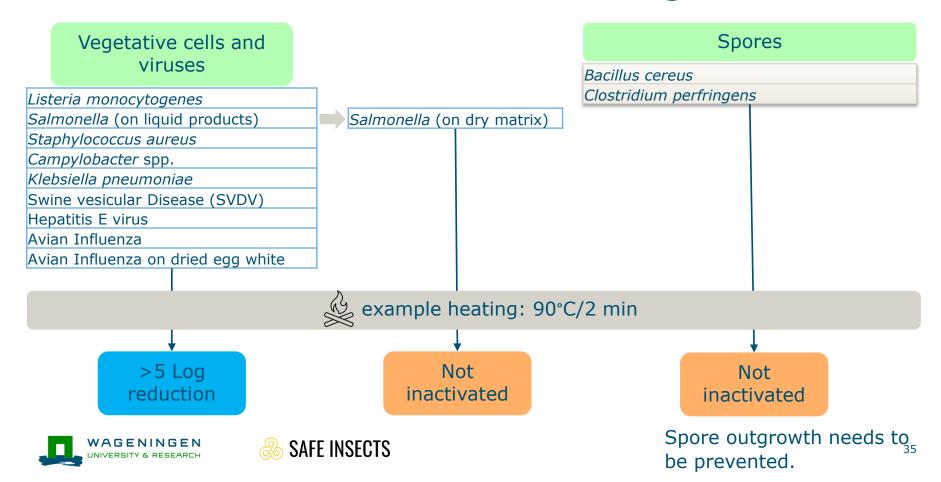
Processing (Hasmik Hayrapetyan)

Heating types for processing of insects


- Heating (conventional)
- Tyndallisation as a heating method for spores
- Microwave heating
- Extrusion

Heat resistance of Avian influenza virus on dry and wet matrixes

	D _(70C) (min)	Log Reduction at 90°C/2 min
mean	0.15	>2000
upper 95% (dried egg		
white)	56.27	6.3


D value on dry matrix is 100 fold higher!

>5 Log reduction

Similar matrix effect for *Salmonella*!

REFRESH project report Hayrapetyan et al., 2019

Inactivation of the relevant microorganisms

Spores as insect contaminants

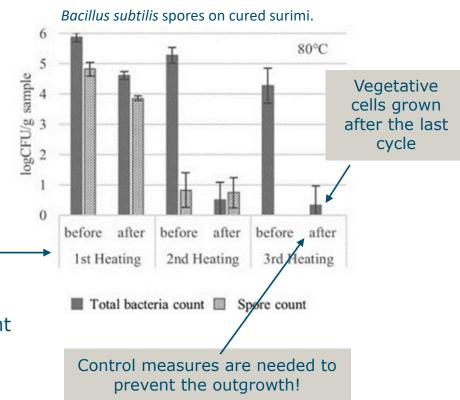
- gut microbiota of insects
- substrate contamination

Blanching mealworm larvae

Inactivated vegetative cells

10 sec No effect on spores 20 sec Spore counts increased! 40 sec 0.8 log spore decrease

Blanching followed by microwave drying (13min) resulted in 1 Log spore reduction.


Tyndallisation as a spore inactivation method

Tyndallization:

- -alternative sterilization method
- -heating the substance for multiple times
- -with a resting period between cycles (Tyndall, 1877).

3x heating and incubation cycles

Beware of superdormant spores: not 100% might germinate or might germinate later.

Control factors preventing spore outgrowth

√pH

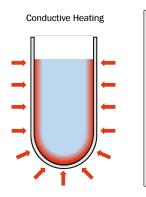
✓ Water activity (a_w)

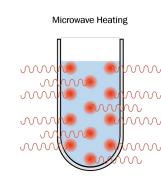
✓ Temperature

√...

Pathogen	Conditions to prevent the
	outgrowth.
B. cereus	a _w <0.92
	T<4°C
	pH<4.3-4.6
C. perfringens	a _w <0.93
	T<10°C
	pH<5.0

Spores cannot grow on a dry matrix such as insect powder. However when the insect powder is used to make a wet product, the other controls need to be in place.

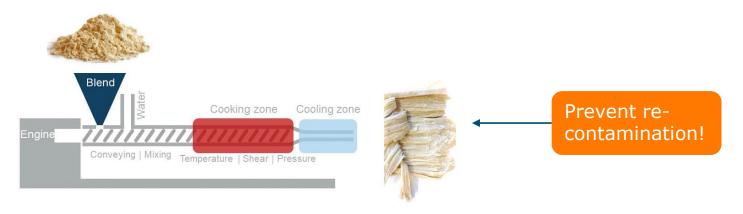




Example of microwave heating for insects

- 100°C for 1h
- Vegetative pathogens and viruses inactivated
- C. botulinum (proteolytic) inactivated by 2.3 Log.
 - > After 2h: by 4.6 Log.

Beware of cold spots (apply mixing)

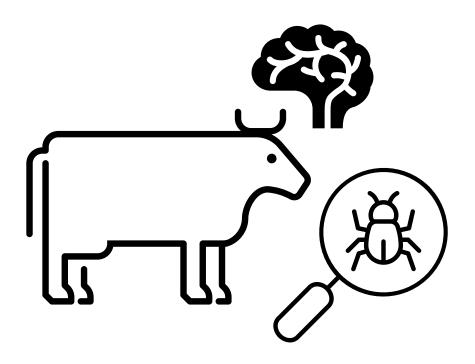


Extrusion as heat processing

High moisture extrusion of insects: 160-170°C (40-45% water)

The effect can be calculated based on the residence time at temperatures higher than 95°C (Likimani 1990).

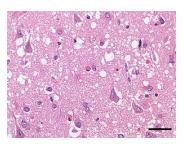
Extrusion at 115.6°C resulted in 4–5 log reduction of *Clostridium sporogenes* spores (Hsieh 1993).


Conclusions: heating

- Easier to inactivate on a liquid matrix than dried
- \blacksquare Spores are harder to inactivate: growth needs to be prevented by low pH, T, $a_{\rm w}$

- Spore inactivation is a good future research topic
- Also other inactivation methods can be considered: e.g. irradiation or E-beam

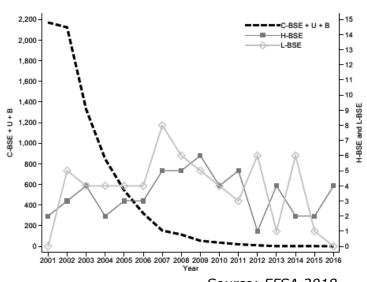
Risk assessment prions (Clazien de Vos)



BSE

- BSE = prion disease of cattle
 - First detected in UK in 1980s
 - Other prion diseases: scrapie (sheep), CWD (deer), CJD (human)
- Pathogen = misfolded prion protein
 - Extremely heat resistant
 - Classical vs atypical BSE strains
- Fatal neurological disease
 - Long incubation period
 - Clinical signs: behavioural changes, mobility disorders

Spongiform degeneration of CNS tissue (vacuoles)



Epidemiology of BSE

- Main transmission route: ingestion of prions via feed
 - > Total feed ban for PAP in 2001 to stop BSE transmission

Source: EFSA 2018 Source: EFSA

17

Voor het eerst in tien jaar weer **BSE in Nederland**

Voor het eerst sinds 2011 is in Nederland koegekte (Boviene Spongiforme Encefalopathie, BSE) vastgesteld. Het gaat om een Zuid-Hollandse koe die op het bedrijf is overleden en bij de destructie is terechtgekomen. Het dier is bij Rendac bemonsterd op de ziekte. De koe was circa negen jaar.

Het gaat om een spontane vorm van BSE die sporadisch voorkomt bij koeien, en die afwijkt van de klassieke BSE die is veroorzaakt door besmet voer. Wageningen Bioveterinary Research heeft vastgesteld dat het om de $a typische \ variant\ gaat.\ Het \ is\ de\ vijf de\ keer\ dat\ een\ atypische\ variant\ van\ BSE\ in\ Nederland\ wordt\ vastgesteld.$

Opgedoken geval gekkekoeienziekte ongevaarlijk voor mensen

1 februari 2023 17:24 • Aangepast 2 februari 2023 06:15

Gekkekoeienziekte op boerderij in Zuid-Holland, geen gevaar voor mensen

Op een boerderij in Zuid-Holland is de gekkekoeienziekte aangetroffen. Dat heeft minister van Landbouw Adema bekendgemaakt. Waar het bedrijf zich precies bevindt, is niet bekendgemaakt. Wageningen BioVeterinary Research heeft het kadaver van het dier onderzoekt niet via veevoe

NIEUWS VEEHOUDERIJ AKKER- & TUINBOUW REGIO

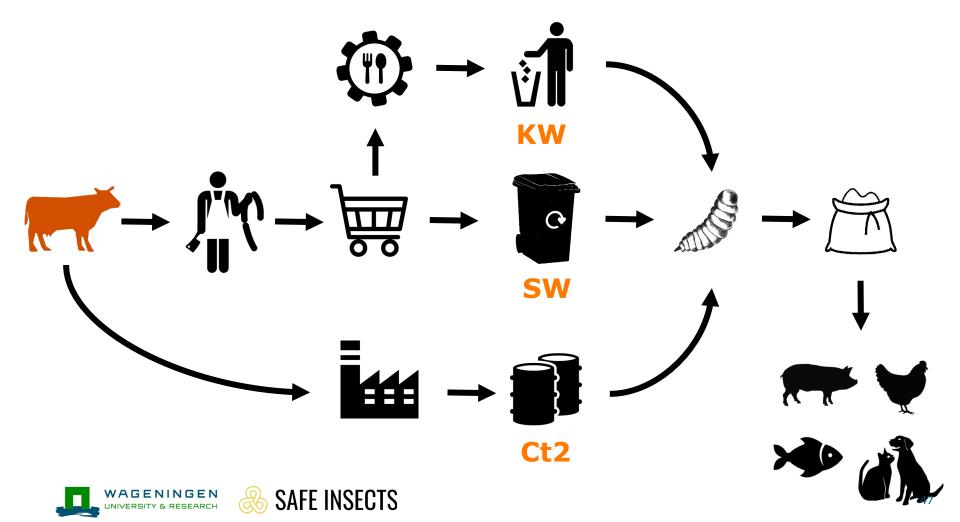
Besmetting koe met BSE komt niet door voer

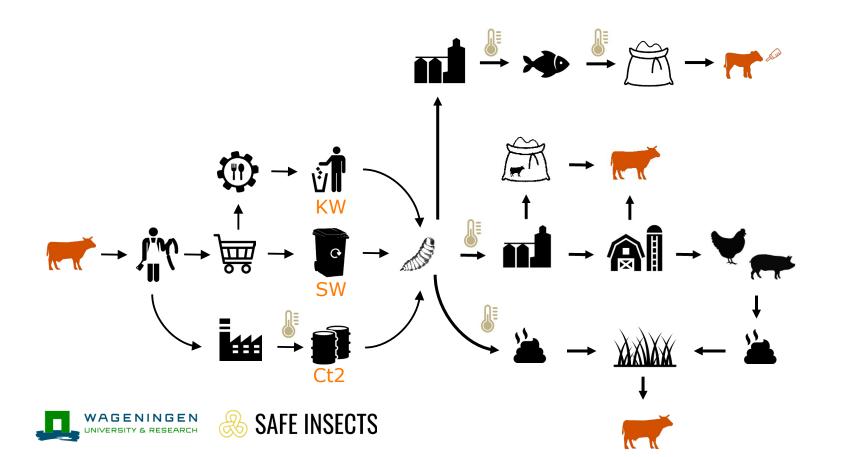
NIEUWS MELKVEE MARTIIN VAN ROSSUM 01 FEB 2023 OM 17:55UUR

De koe op een bedrijf in Zuid-Holland die besmet was met gekkekoeienziekte (BSE), is niet besmet geraakt via het voer. Dat blijkt uit onderzoek van Wageningen Bioveterinary Research (WBVR). Het gaat om de zogenoemde 'atypische variant' die als ouderdomsziekte sporadisch voorkomt bij koeien.

Risk assessment BSE

- Residual streams
 - Broiler manure (BM)
 - Cat 2 meat meal from animal rendering (Ct2)
 - Organic waste from household kitchens (KW)
 - Supermarket waste (SW)
- Main output of risk model
 - CoID50 ending up with cattle if 1 BSE cow is processed





Exposure routes

Infectivity in substrate

- KW and SW
 - Single BSE infected cow slaughtered at clinical end stage
 - SRM removal, infectivity in other tissues ≤ detection level
 - Probability of contamination at slaughter
 - Meat discarded at supermarket (2.3%) and househould level (3.5% in GFE)
- Ct2 meat meal
 - Single BSE infected cow rejected for human consumption at slaughter
 - Negative test result for BSE (?)
 - SRM removal, infectivity in other tissues ≤ detection level
 - Probability of contamination at slaughter
 - Partial inactivation by rendering process (average of 2.3 log₁₀)

Infectivity in insect meal

- Insects lack PrP cells
 - No natural prion disease in insects
 - No biological vector for prions (amplification)
- Worst-case: all infectivity retained in insects and frass
- Division of infectivity across insects and frass
 - Relative weights of insects and frass at harvest
 - Alternatively: weight of gut contents only (most infectivity in frass)
- No inactivation by production of insect meal

Exposure routes

Contaminated feed

- Mixed feed mill: cross-contamination / mislabelling
- Mixed farm: cross-contamination / wrong feed / accidental access

Grazing

- o Frass used to fertilize grassland
- Manure of pigs/poultry fed with insect meal to fertilize grassland
- No inactivation of prions in gastro-intestinal tract of pigs/poultry

Calf milk replacer

- \circ Slight inactivation by production of aquafeed (extrusion): 0.2 \log_{10}
- Infectivity retained in small percentage of fish for limited time
- No inactivation by production of fishmeal

Preliminary results

 $R_0 < 1$

- Very low levels of infectivity to cattle for each substrate
- Main data gap
 - Fate of prions in insects
 - → Worst-case approach

- Risk of single BSE-infected cow
 - Small number of BSE cattle slaughtered and processed
- Equal risk for classical BSE and atypical BSE
- Homogenous distribution of infectivity in tissues/ products

