Determination of microplastics in reared black soldier fly larvae (Hermetia illucens) and yellow mealworms (Tenebrio molitor) using polarized light optical microscopy

75th EAAP meeting, Florence; September 4th, 2024

Naomi Dam, Nathan Meijer, Guus van der Borg

Introduction

- Novel protein source for food and feed
- Valorisation of waste materials (e.g. former foodstuffs)
- Chemical & physical hazards
- Packaging materials: microplastics

Introduction

- Microplastics: < 5 mm</p>
- Insufficient separation of packaging materials from biomass
- Risks for conventional livestock, but also for insects?
 - Suffocation
 - Transfer
- Presence of MPs in BSFL and YMW

Experimental setup

	Black soldier fly		Yellow mealworm	
	Study 1	Study 2		
Plastics	PET, LDPE-300, LDPE-125, LDPE-film		PET, LDPE-300, LDPE-125, BLμP 53-63, BLμP 90-106, GRμP 90-106, PA, PTFE, PS, PP	
Exposure	1, 3, 10%	0.15, 3%	1%	
Total treatments	12	8	10	
Replicates per treatment	3	3	3	
Negative control	n=9	n=9	n=9	
After harvesting	No washing	Washing	Washing	

Experimental setup

Larval survival & growth

Black soldier fly			Yellow mealworm
	Study 1	Study 2	
Plastics	PET, LDPE-300,	LDPE-125, LDPE-film	PET, LDPE-300, LDPE-125, BLμP 53-63, BLμP 90-106, GRμP 90-106, PA, PTFE, PS, PP
Exposure	1, 3, 10%	0.15, 3%	1%
Total treatments	12	8	10
Replicates per treatment	3	3	3
Negative control	n=9	n=9	n=9
After harvesting	No washing	Washing	Washing

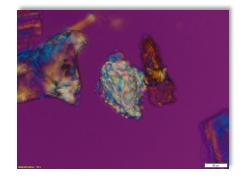
Experimental setup

Detection of particles

	Black soldier fly			Yellow mealworm
	Study 1	Study 2		
Plastics	PET, LDPE-300,	LDPE-125, LDPE-film		PET, LDPE-300, LDPE-125, BLμP 53-63, BLμP 90-106, GRμP 90-106, PA, PTFE, PS, PP
Exposure	1, 3, 10%	0.15, 3%		1%
Total treatments	12	8		10
Replicates per treatment	3	3		3
Negative control	n=9	n=9		n=9
After harvesting	No washing	Washing		Washing

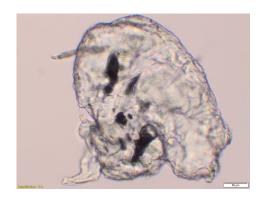
Method

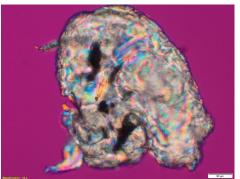
Storage at -20 °C


Digestion

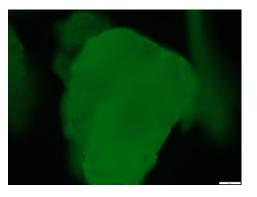
Filtering

Microscopy with polarized light





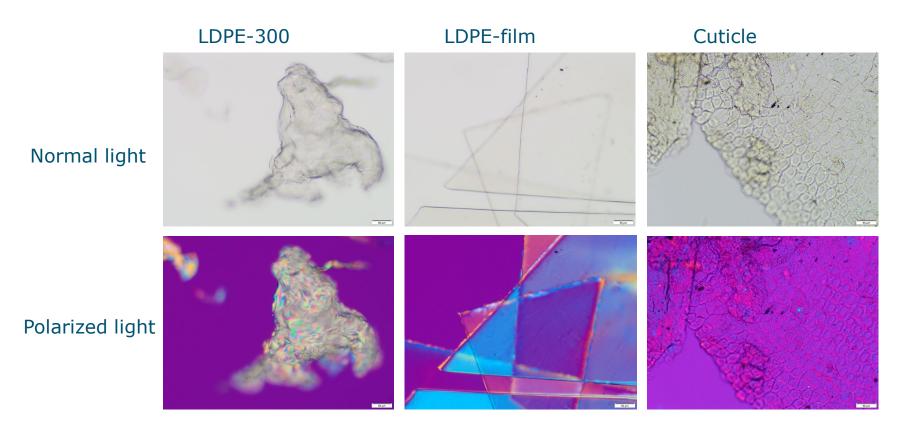
Microscopy: why polarized light?


- Nile red
 - Fluorescent dye
 - Likes everything that is very apolar

Normal light

Polarized light

Stained with Nile Red



Microscopy: why polarized light?

	Nile Red	Polarized light
Pros	Fluorescence easily visible against dark background	No staining procedure necessary Unique pattern observed for certain microplastics
Cons	Possible co-staining of matrix Possible autofluorescence of matrix	Specific microscopic skills necessary

Microscopy: why polarized light?

Results: survival & yield

No significant difference between groups

BSF study 1 YMW

Tested plastics have no influence on survival and growth

Results: particles found

	Bla	ck so	oldier f	ily	
	Stud 1%	y 1 3%	10%	Study 2 0.15%	3%
PET	-	-	-	± 10% of all particles, plastic	> 50% of all particles, plastic
LDPE-300	-	-	-	Not present	Trace
LDPE-125	-	-	-	Not present	Trace
LDPE-film	-	-	-	Not present	Trace

Not washing = no particle detection!

Discussion

Black soldier fly

- More plastic particles found in PET treatment compared to LDPE treatment (Both 300 µm size & powder)
- At 3%, more plastic particles than at 0.15%
 - Ingestion of MPs depends on initial particle load (Lievens et al. 2023)
- Possibly chemical structure plays a role

Results: particles found

Yellow mealworm	
Significantly different	Not significantly different
PET, LDPE-300, GRµP 90-106	LDPE-125, BLµP 53-63, BLµP 90-106, PA, PTFE, PS, PP

Discussion

Yellow mealworm

- Significantly more plastic particles in: PET, LDPE-300, GRµP 90-106
 - PET & LDPE-300 both 300 μm size
- Many factors could play a role for consumption
 - Size
- Shape

- Chemical structure
- Density

Conclusions & further steps

- Presence of microplastics in insect feed did not affect survival & growth of YMW and BSFL
- **BSFL**: More plastic particles were found in substrate spiked with PET, with more particles present at a higher concentration substrate spiked with LDPE showed no or trace amounts of plastic particles
- YMW: significantly more plastic particles found in substrate spiked with PET, LDPE-300 and GRµP 90-106
- Future research to focus on more types of plastics, shapes, densities, sizes

Acknowledgements

The BSFL study was funded by The Netherlands Ministry of Agriculture, Fisheries, Food Security and Nature; grant number LWV19099. Experiments were conducted in collaboration with Protix BV.

The YMW study has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861976 (project SUSINCHAIN). Additional financing from the Netherlands Ministry of Agriculture, Nature and Food Quality (through project BO-57-102-005) is acknowledged. Experiments were conducted in collaboration with Ynsect R&D NL.

Wageningen Food Safety Research

Akkersmaalsbos 2, 6708 WB Wageningen

The Netherlands

Co-funded by the European Union

