

Sustainability of complex insect production chains: from food waste to feed and food

S. Smetana, D. Ristic, V. Khieya, J. Pertusan, and V. Heinz

Prof. Dr. Sergiy Smetana
Head of Department Food Data Group
DIL e. V., D-49610 Quakenbrück, Germany

Institute of Food Quality and Food Safety, **University of Veterinary Medicine Hannover**,

Foundation

OVERVIEW

FOUNDED 1983

MEMBERS 175

EMPLOYEES 200

LOCATIONS

- QUAKENBRÜCK (GER)
- BERLIN (GER)
- KARLSRUHE (GER)
- BRUSSELS (BEL)

LEGAL STATUS

REGISTERED ASSOCIATION

DIRECTOR

DR. VOLKER HEINZ

MISSION

KNOWLEDGE FOR SUPERIOR FOODS

DIL MEMBERS

Core competences

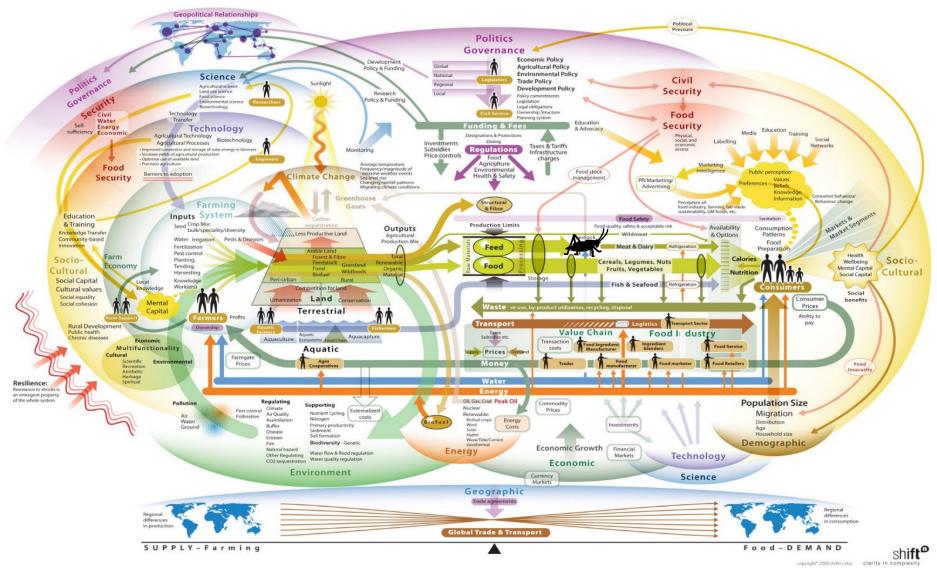
SAFETY + AUTHENTICITY

SUSTAINABILITY

BIOMASS PRODUCTION

FOOD PROCESSING

HEALTH & WELLBEING



Complex system

Urgent Need to Define End-of-Waste Criteria for Efficient Utilization of Organic Waste

"Waste Not" by Song Dong

pubs.acs.org/acssrm

Viewpoint

Urgent Need to Define End-of-Waste Criteria for Efficient Utilization of Organic Waste

Daniel Pleissner,* Loreena Stephan, and Sergiy Smetana

Can we assure the safe transformation of food waste by insects?

OURNAL OF INSECTS AS FOOD AND FEED (2024) DOI:10.1163/23524588-00001122 INSECTS

- Quality of feed matters
- Bioaccumulation of some heavy metals
- Safety assurance is needed
- Not always reduction of environmental impacts

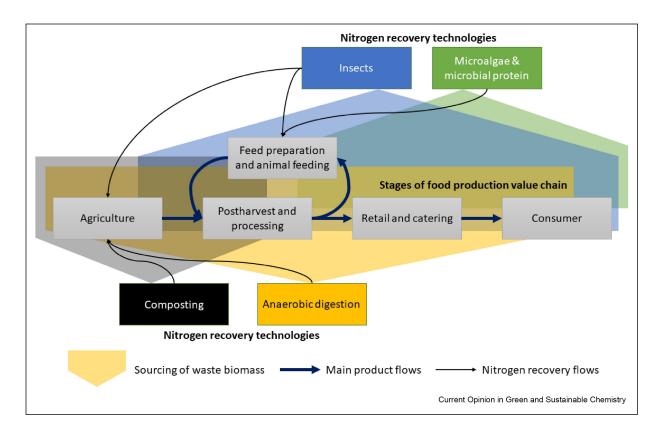
REVIEW ARTICLE

A decade of advances in black soldier fly research: from genetics to sustainability

C.G. Athanassiou¹, C.L. Coudron², D. Deruytter², C.I. Rumbos¹, L. Gasco³, F. Gai⁴, C. Sandrock⁵, J. De Smet⁶, G. Tettamanti^{7,8}, A. Francis⁹, J.-I. Petrusan⁹ and S. Smetana^{9,10}*

- Circularity with insects consequential LCA
- Determination of the indirect effects (market effects)
- Initial consequential approach first insight into the potential positive and negative rebound effects
- The circularity potential should aim effects on the market, and thus, support consequential modelling with insights into the rebound effects.

Journal of Insects as Food and Feed, 2023; 9(9): 1111-1114


Circularity and environmental impact of edible insects

Sergiy Smetana

DIL German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Straße 7, 49610, Quakenbrück, Germany s.smetana@dil-ev.de

Can we assure the safe transformation of food waste by insects?

Insects (*Hermetia illucens*) on residuals can recover 5.4–53% of nitrogen from residuals (stored in insect biomass) and additionally up to 50% of nitrogen in frass.

Intensification of some direct emissions (around 70% increase for CO₂ emissions and 60% increase of ammonia-nitrogen emissions)

1 kg protein (0,16 kg N) produced by insect and similar amount in frass:

GWP: -6.42 to 7.0 kg CO2eq.

NRE: 102.7-138.7 MJ

LU: 1.6-1.7 m2a

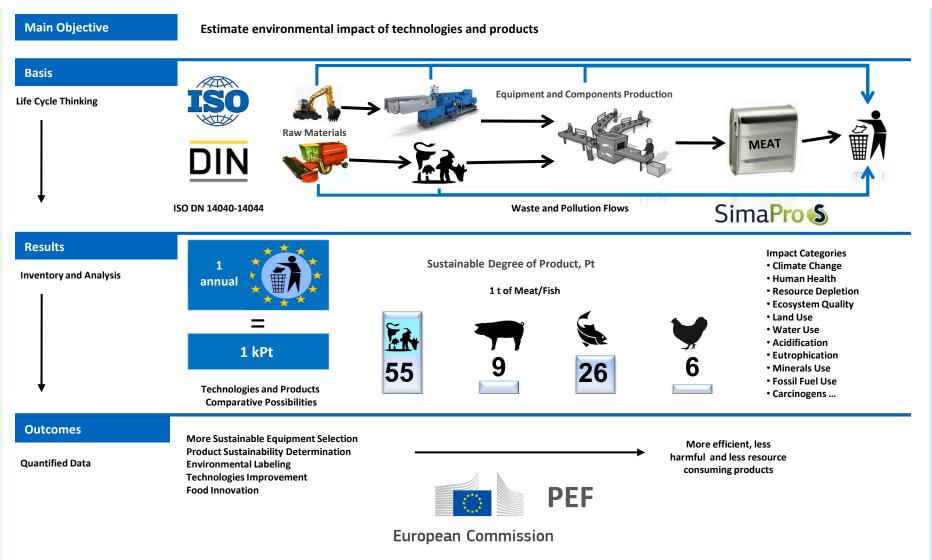
Show more V

+ Add to Mendeley & Share 55 Cite

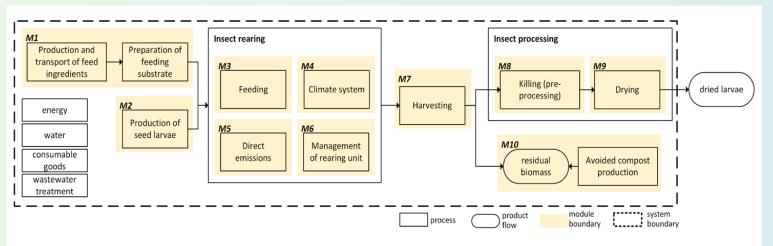
https://doi.org/10.1016/j.cogsc.2023.100853 >

Under a Creative Commons license

AC: -0.1 to 0.1 kg SO2eq



Methodological insights: LCA



- Hotspots
- Best options
- Cradle-to-grave
- FU
- Comprehensive methods
- Potential impacts

Modularity to deal with complexity

Scheme of modules for the insect production chain (Spykman et al., 2021)

S. Smetana, A. Bhatia, A. Tonda, N. Mouhrim, A. Green, D. Paguero, A. Francis, V. Heinz (2024). **Application of modular Life Cycle Assessment approaches enhanced with Decision Support System for the design of sustainable insect chains.** JIFF. **Under Revision.**

Exemplary LC inventory for the different modules of insect production chains

Module	H. Illucens	T. molitor	A. domesticus	M. domestica
M1	M1.1. = 0.333 kg	M1.1. = 0.95 kg	M1.1. = 0.63 kg	M1.1. = 0.55 kg
	Water = 1.336 kg	Water = 0.386 kg	Water = 0.37 kg	Water = 0.836 kg
	El = 0.099 kWh	El = 0.07 kWh	El = 0.07 kWh	El = 0.099 kWh
	Det = 0.000838 kg	Det = 0.0007 kg	Det = 0.0007 kg	Det = 0.000838 kg
M2	Feed = 0.012 kg	Feed = 0.012 kg	Feed = 0.012 kg	Feed = 0.012 kg
	Water = 1.848 kg	Water = 1.848 kg	Water = 0.06 kg	Water = 1.848 kg
	Det = 0.002 kg	Det = 0.002 kg	Det = 0.002 kg	Det = 0.002 kg
	El = 0.06 kWh	El = 0.06 kWh	El = 0.036 kWh	El = 0.06 kWh
	Gas = 0.063 MJ	Gas = 0.063 MJ		Gas = 0.063 MJ
M3	El = 0.054 kWh	El = 0.054 kWh	El = 0.1 kWh	El = 0.036 kWh
	Water = 0.335 kg	Water = 0.335 kg		Water = 0.335 kg
	Det = 0.00042 kg	Det = 0.00042 kg		Det = 0.00042 kg
M4	El = 0.032 kWh	El = 0.176 kWh	El = 0.083 kWh	El = 0.03 kWh
	Gas = 0.109 MJ	Gas = 0.59 MJ		Gas = 0.1 MJ
M6	Water = 16.12 kg	Water = 16.12 kg	Water = 5.0 kg	Water = 16.12 kg
	Det = 0.02 kg	Det = 0.02 kg	Det = 0.02 kg	Det = 0.02 kg
	El = 0.112 kWh	El = 0.112 kWh	El = 0.06 kWh	El = 0.112 kWh
M7	Water = 1.65 kg	Water = 1.65 kg	Water = 1.65 kg	Water = 1.65 kg
	Det = 0.01 kg	Det = 0.01 kg	Det = 0.01 kg	Det = 0.01 kg
	El = 0.016 kWh	El = 0.014 kWh	El = 0.008 kWh	El = 0.05 kWh
M8	Water = 0.584 kg	Water = 0.584 kg	Water = 0.584 kg	Water = 0.584 kg
	Det = 0.0002 kg	Det = 0.0002 kg	Det = 0.0002 kg	Det = 0.0002 kg
	El = 0.004 kWh	El = 0.22 kWh	El = 0.14 kWh	El = 0.004 kWh
	Gas = 2.2 MJ			Gas = 2.2 MJ
M9	Water = 0.061 kg	Water = 0.061 kg	Water = 0.061 kg	Water = 0.061 kg
	Det = 0.000076 kg	Det = 0.000076 kg	Det = 0.000076 kg	Det = 0.000076 kg
	El = 0.0059 kWh	El = 0.0059 kWh	El = 0.28 kWh	El = 0.0059 kWh
	Gas = 6.16 MJ	Gas = 6.16 MJ		Gas = 6.16 MJ
M10	100% residuals = waste	100% residuals =	100% residuals =	100% residuals =
	for compost	waste for compost	waste for compost	waste for compost

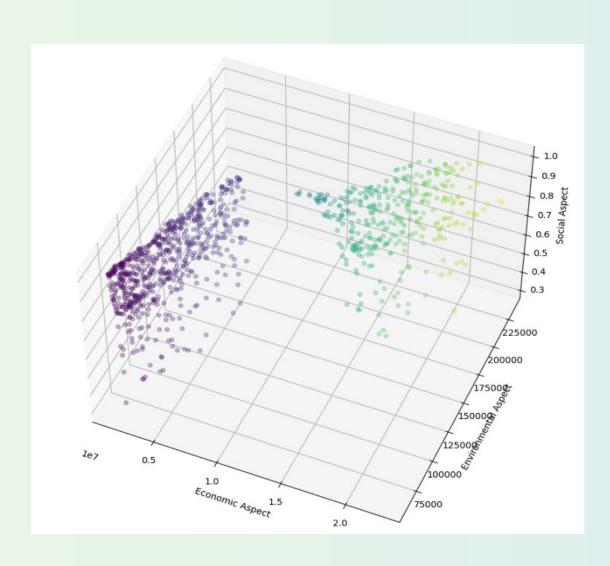
Note: Values are indicated per unit of output from each module (M1 - production of 1 kg fm feeding substrate, M2 - production of 1000 of 5-DOL larvae, M3 - feeding of 1 kg fm substrate to larvae, M4 - running of climate system for 1 day with approximately 1 kg fm insect output, M5 - direct emissions (is excluded from inventory as no inputs are indicated), M6 - management activities allocated to 1 kg fm insects, M7 - harvesting activities allocated to 1 kg fm insects, M9 - removal of 1 kg water from insect larvae, M10 - substitution or allocation of 1 kg fm residuals, E1 - electricity; Det - detergent, Gas - natural gas.

Modularity to deal with complexity

Module variations and changes of scaling factors (*H. illucens*)

Module	Scaling factor value change	Module	Scaling factor value change	
M1. Insect feeds		M9. Secondary processing		
M1.1 Compound chicken feed	100%	M9.1 Convection drying	100%	
M1.2 Gainesville fly diet	Weight 3% increase (wheat bran, alfalfa, cornmeal)	M9.2 Freeze-drying	200%	
M1.3 Distiller's grains	100%	M9.3 Microwave drying	130%	
M1.4 Wheat middlings	Weight 3% increase			
M1.5 Fruit and vegetable waste	Weight 10x increase			
M1.6 Poultry manure	Weight 4x increase			
M8. Pre-processing		M10. System expansion		
M8.1 Blanching	100%	M10.1 Avoided compost production	100%	
M8.2 Freezing	2500%	M10.2 Avoided fertilizer production	20%	
M8.3 High pressure processing	235%	M10.3 Mass allocation	50%	
M8.4 Microwave sterilization	200%	M10.4 Economic allocation	22%	

Main environmental impacts of four insect species under the study based on modular variations (where available)


Type of feed	Impact categories	H. illucens	T. molitor	A. domesticus	M. domestica
Compound feeds	GHG ALO WD	1.4-15 0.01-94.7 1.26	9-10.3 12 1.8-8.7	7.7-8.7 27-180 1.4-2.7	20 16.7 1.3
By-products	GHG	0.3-5	3-10.3	5-27	0.8-12
	ALO	0-4.9	5.3-17	12-79	0.03-61
	WD	0.8-2	0.1-0.2	0.1-0.2	8.5-11
Wastes	GHG	-6.42÷3.5	0.6-1.2	1.3-2	5.9-9.7
	ALO	-16.8÷4.9	0.1-0.3	0.5-1	4.4-7.7
	WD	0.8-1.1	0.4-1.7	0.4-0.7	114-188

Note: Life Cycle Impact Assessment method - IMPACT 2002+, Functional unit - 1 kg of dry matter of insects produced (dried whole insects), GHG - greenhouse gas emissions in $kgCO_2eq.$, ALO - agricultural land occupation in m^2a , WD - water demand in m^3 (assessed with IMPACT World+).

S. Smetana, A. Bhatia, A. Tonda, N. Mouhrim, A. Green, D. Paguero, A. Francis, V. Heinz (2024). **Application of modular Life Cycle Assessment approaches enhanced with Decision Support System for the design of sustainable insect chains.** JIFF. **Under Revision.**

Modularity to deal with complexity

Pareto front resulting from the multi-objective optimization, showing all three objectives. The visible discontinuity is related to the absence of candidate solutions describing facilities of intermediate scale (SC=2 or SC=3), hinting those solutions including small and very large-scale facilities dominate all others.

S. Smetana, A. Bhatia, A. Tonda, N. Mouhrim, A. Green, D. Paguero, A. Francis, V. Heinz (2024). **Application of modular Life Cycle Assessment approaches enhanced with Decision Support System for the design of sustainable insect chains.** JIFF. **Under Revision.**

Take away messages

- 1. Insect production systems are complex
- 2. And include a few other complex problems
- 3. There are however, possibilities for the easy solutions (industrial synergism)
- 4. Modelling of insect production chains with multiple unknowns is complicated
- 5. Validation of scenarios are needed

Acknowledgments

- CIPROMED Project, with funding from the PRIMA programme under the Grant Agreement GA2231
- ADVAGROMED Project, with funding from the PRIMA programme (GA number: 02WPM1651)

Thank you for for your attention!

DIL Deutsches Institut für Lebensmitteltechnik e. V. University of Veterinary Medicine Hanover

Prof. Dr. Sergiy Smetana Food Data Group

s.smetana@dil-ev.de

