

75th EAAP Annual Meeting 1/5 September 2024 - Florence, Italy

Sodium bicarbonate limited milk fat depression of lactating dairy ewes fed ryegrass herbage rich in water-soluble carbohydrates

M.A. Porcu, A. Ledda, D.Duras, E. Ruggiu, S. Pinna, A. Mazza, A. Fenu, R. Rubattu, A. Cannas

Department of Agricultural Sciences, University of Sassari Sardinia, Italy

INTRODUCTION

Water-soluble carbohydrates (WSC) overload in grazing dairy ewes

Modern varieties of annual ryegrass (especially tetraploid types) can accumulate high content of WSC (simple sugars+fructans) during winter and spring with low temperatures and sunny days, which corresponded to

milk fat depression (MFD) in grazing dairy ewes in Sardinia

A well studied issue in equine nutrition

pasture-associated laminitis

Little studied in ruminants, especially in dairy ewes

Pathogenesis of **oligofructose-induced acute laminitis** is similar in horses and cows, both consequent to **acidosis conditions**

(Thoefner et al., 2004; Filho et al., 2019)

INTRODUCTION

Recent studies on grazing dairy ewes in Sardinia

Negative correlation between WSC intake and ruminal pH

 \uparrow WSC intake \downarrow acetate:propionate ratio \uparrow glucose and insuline in blood

(Molle et al., 2022)

Negative correlation between WSC content in pasture and milk fat content (%)

(Satta et al., 2023)

Negative correlation between WSC intake (g DM/d) and milk fat content (%)

in milking 3 h after herbage supply (40-50% of total daily grass intake)

(Porcu et al., 2023)

INTRODUCTION

Use of sodium bicarbonate (NaHCO₃) as a ruminal buffer to prevent the negative effects of carbohydrate overload

Studies on ruminants showed that sodium bicarbonate:

1 DMI, nutrient digestibility, ruminal pH and TVFA

1 acetate to propionate ratio

1 milk yield, milk fat content (%)

(Hart and Doyle, 1985; Calsamiglia et al., 2012; Farghaly et al., 2019; Nuhu et al., 2019; Vicente et al., 2023; Ameen et al., 2023)

But the **response to the use of NaHCO₃** varies according to **supply method and diet type**

→ greater effect at lower ruminal pH

(Tripathi et al., 2004; Hu and Murphy, 2005; Calsamiglia et al., 2012)

Hypothesis

Sodium bicarbonate (NaHCO₃), supplied as a ruminal buffer, could prevent subacidosis and milk fat depression from WSC overload in lactating grazing ewes

Objectives

Test the effect of using sodium bicarbonate on milk fat synthesis by conducting a trial on lactating Sarda ewes fed fresh herbage of tetraploid annual ryegrass with high concentrations of WSC (mean 28% DM)

Materials and methods

Trial conducted at experimental farm of the Department of Agricultural Sciences of the University of Sassari

Experimental period: 12 d (6 April - 17 April 2023)

10 Sarda sheep in the third month of lactation, divided on the basis of BW (58.6 ± 6.7 kg), milk yield (2123 ± 254 g/ewe per day) and milk fat content (5.50 ± 0.46%) into two homogeneous groups fed fresh grass indoors and concentrates:

Control (CNT)

Sodium bicarbonate (BIC)

25 g/d of sodium bicarbonate supplied 30 min before grass supply

Materials and methods

Control (CNT) and Sodium bicarbonate (BIC)

The herbage was mowed daily from a field of ryegrass (*Lolium multiflorum* var. westervoldicum, tetraploid type) rich in WSC, sown in autumn 2023 within the same experimental farm

The grass was supplied in the barn from 12:30 PM to 7:00 AM, immediately after mowing, with automatic feeders of Biocontrol AS (Norway), which measure individual intake and daily DMI patterns

Experimental diet sequence (per animal)

Integration:

Soybean meal fed individually at milking (7:30 AM, 4:30 PM)

Corn grains and beet pulps fed individually for 20 minutes

Hour	Control	Sodium bicarbonate		
7:30 AM (morning milking)	200 g Soybean meal	200 g Soybean meal		
8:00 AM	275 g Corn grains	275 g Corn grains		
6:00 Al*I	150 g Beet pulps*	150 g Beet pulps*		
12:00 AM		Sodium bicarbonate		
From 12:30 PM to 7:00 AM	Ryegrass herbage supply			
4:30 PM (afternoon milking)	200 g Soybean meal	200 g Soybean meal		
5:00 PM	275 g Corn grains	275 g Corn grains		
3:00 PM	150 g Beet pulp*	150 g Beet pulp*		

^{*}Until 7 April (2nd experimental day)

Samplings and analyses

Intake and milk

- Continuous: individual intake of grass
- Daily: individual intake of concentrates at each meal
- Daily: milk yield at each milking (electronic and by weight)
- 2 times a week: individual milk samples and analyses (fat, protein, lactose, urea, SCC)

Herbage

- Daily: samples of ryegrass herbage supplied to ewes
 - > Lyophilization of grass samples
 - Complete chemical composition by NIRS
 - > WSC by the anthrone method (Deriaz, 1961) in correspondence of milk sampling days

Statistical analyses

Data on intake, milk yield and composition were subjected to *General Linear Model (GLM)* using Minitab 21.4.1 (©2023 Minitab, LLC)

The model used was as follows:

$$Y_{ij} = \mu + bx_{ijk} + treat_i + day_j + treat_i \times day_j + anim_i + Error_{ijk}$$

where:

 μ is the mean

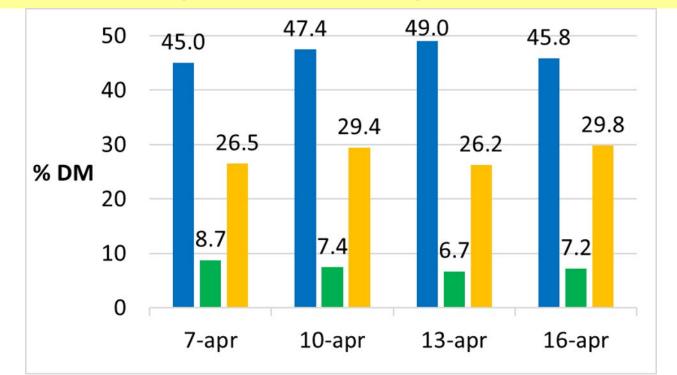
b is the regression slope

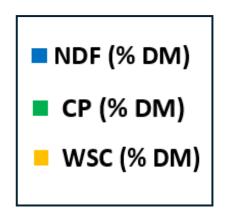
 x_{iik} is the covariate (i.e. pre-experimental data)

treat_i is the treatment effect (i = CNT; BIC)

 day_i is the day of data collection (j = 1; 2; 3; 4)

treat; x day; is the interaction


 $anim_k$ is the random effect of animal


*Error*_{iik} is the experimental error

Average chemical composition of grass supplied during the experimental period

% DM	DM	СР	NDF	ADF	ADL	EE	wsc	NFC
Mean	22.7	7.5	46.8	27.0	5.7	1.9 /	28.0	33.8
Min	21.6	6.7	45.0	24.7	5.0	1.7	26.2	30.3
Max	25.5	8.7	49.0	29.4	6.3	2.1	29.8	36.2

Grass chemical composition in correspondence of milk sampling

R	esi	ults
---	-----	------

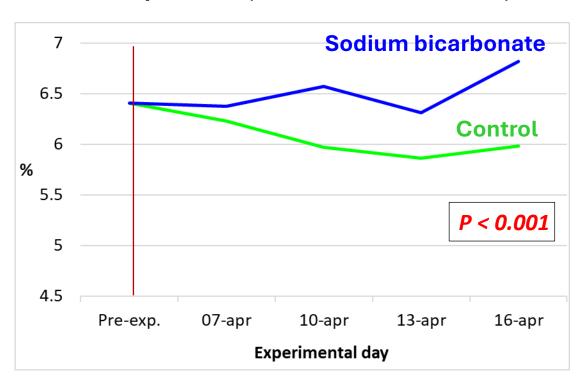
DM intake and milk yield

	Control	Sodium bicarbonate	SEM	P-value cov. Adj mean
Total intake, g DM/d	2178	2319	44.2	0.03
Grass intake, g DM/d	1340	1488	45.9	0.03
Concentrate intake, g DM/d	843	826	17	NS
WSC intake, g DM/d	377	418	12.8	0.03
NDF intake, g DM/d	791	857	21.8	0.04
CP intake, g DM/d	331	335	6.3	NS
Daily milk yield, g/d	1859	1838	28.6	NS
Milk yield afternoon, g/milking	649	(647)	16.1	NS
Milk yield morning, g/milking	1206	1194	24.5	NS

Covariated-adjusted means compared to the values of pre-experimental measurements (mean 2-5 April)

Milk composition

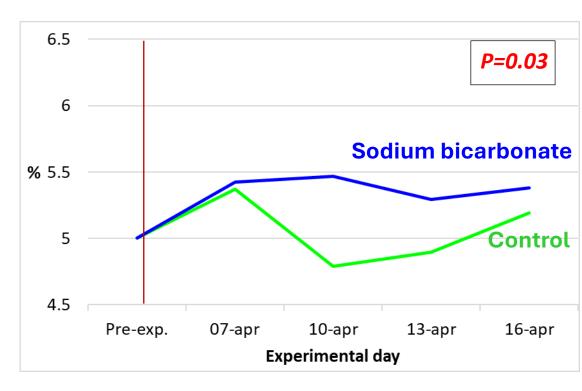
	Control	Sodium bicarbonate	SEM	P-value cov. Adj mean
Daily milk fat content (%)	5.41	5.79	0.08	0.002
Milk fat content, afternoon (%)	6.01	(6.52	0.09	< 0.001
Milk fat content, morning (%)	5.06	5.39	0.10	0.03
Daily fat yield (g/d)	99.7	106.5	2.34	0.05
Fat yield, afternoon (g/milking)	38.7	42.2	1.12	0.03
Fat yield, morning (g/milking)	60.6	64.7	2.03	NS
Daily milk protein content (%)	4.81	4.81	0.04	NS
Milk protein content, afternoon (%)	4.78	4.87	0.03	NS
Milk protein content, morning (%)	4.83	4.77	0.04	NS
Daily milk fat:protein ratio	1.13	1.21	0.01	< 0.001
Milk fat:protein ratio, afternoon	1.25	(1.35	0.02	< 0.001
Milk fat:protein ratio, morning	1.06	1.13	0.02	0.01


Covariated-adjusted means compared to the values of pre-experimental measurements (mean 2-5 April)

Milk fat content (%)

Covariated-adjusted means compared to the values of pre-experimental measurements (mean 2-5 April)

AFTERNOON MILKING


Pre-exp. mean: (CNT 6.36%, BIC 6.45%)

Experimental means BIC 6.52%, CNT 6.01%

MORNING MILKING

Pre-exp. mean: (CNT 5.20%, BIC 4.81%)

Experimental means:

BIC 5.39%, CNT 5.06%

Discussion

- This trial was conducted **indoor**. The **feeding behaviour of grazing ewes will be different** (e.g. higher selection of plant species and plant parts, trampling, environmental effects)
 - on pasture there could be ↑ WSC intake (selection of WSC rich plant components and ↑ hourly intake rate)
 → negative effects on milk fat production
- The marked effect on milk fat content in the afternoon milking, 4 hours after treatment administration, is likely
 due to the rapid action of NaHCO₃ at the ruminal level

 (Russel and Chow, 1993)
- Considering that response to NaHCO₃ depends on the type of diet (greater at low ruminal pH), our results indirectly confirm that grazing on WSC-rich grasses can cause a lowering of ruminal pH. Thus, the use of buffers that act at ruminal level is beneficial on milk fat content
- Combining buffers, such as NaHCO₃ with rapidly rumen buffer action, and alkalizers, such as magnesium oxide (MgO), that have a slower action (relevant after 24 h) with a combined rumen and postabsorptive effect
 (Calsamiglia et al., 2012)
 - → additive effect on milk fat content in pasture fed sheep?
- Supply of hay (high NDF e peNDF) before grazing WSC-rich grasses can be beneficial →

 ↑ chewing time, rumination, salivation = rumen buffer action

Conclusions

In conclusion, the use of sodium bicarbonate, supplied as a ruminal buffer just before grass supply, in diet of ewes fed ryegrass herbage rich in WSC (28% DM):

- Increases DMI (grass intake)
- Increases milk fat content (%) and milk fat yield (g/d), especially in afternoon milking, probably due to its stronger short-term action
- Can be used to prevent ruminal subacidosis and milk fat depression from WSC overload

Additionally, this study highlights that **WSC content** is an important **herbage quality parameter** to be considered when **formulating rations for pasture-fed dairy sheep**

Thank you for the attention

Use of sodium bicarbonate (NaHCO₃) as a ruminal buffer to prevent the negative effects of carbohydrate overload

- One of the most common buffer salts used in ruminant rations (Nuhu et al., 2019)
- Prevent ruminal pH reduction and thus ruminal acidosis and decrease in milk fat content (Kalscheur et al., 1997; Calsamiglia et al., 2012; Jaramillo-López et al., 2017)
- Fast buffer action on ruminal fluid prevents post-prandial H⁺ increases (Russel and Chow, 1993)
- Prevent **overgrowth of acid-tolerant lactobacilli** and pH decrease (Kleen et al., 2003)
- \$\square\$ Production and flow to duodenum of **trans C18:1 FA**, a cause of MFD (Kalscheur et al., 1997)
- Can increase **passage and fluid dilution rate** of nutrients (Russel and Chow 1993; Vicente et al., 2023)
- Improve outflow of ruminal fluid (< accumulation VFA and lactate) (Vicente et al., 2023)