

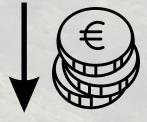
The 75th EAAP Annual Meeting

1/5 September 2024 - Florence, Italy

Effects of undernutrition and hydroxytyrosol supplementation during last third of gestation on growth and physiological profiles of male beef offspring

Akesolo-Atutxa O.¹, López de Armentia L.¹, Noya A.¹, Ripoll G.¹, Escalera-Moreno N.², Álvarez-Rodríguez J.², Serrano B.², Sanz A.^{1*}

¹ CITA de Aragón-IA2, Spain (*asanz@aragon.es); ² University of Lleida, Spain

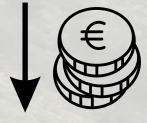


Introduction

PRODUCTIVITY OF SUCKLER COWS

ADAPTATION TO EXTENSIVE CONDITIONS

PERIODS OF UNDERNOURISHMENT



Introduction

PRODUCTIVITY OF SUCKLER COWS

NUTRITION

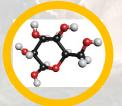
ADAPTATION TO EXTENSIVE CONDITIONS

PERIODS OF UNDERNOURISHMENT

Introduction > Altered productive characteristics in offspring

Birth weight LeMaster et al., 2017

Obesity Symonds et al., 2003


Feed intake Ford et al., 2007

Antral follicles Mossa et al., 2013

Glucose metabolism Long et al., 2010

Mammary alveoli Skibiel et al., 2018a,b

IGF-1 concentration Maresca et al., 2020

Transgenerational effects Ford y Long, 2011

However, contradictory results may be found ...

Introduction

SUBNUTRITION (35%) IN THE **FIRST THIRD** OF PREGNANCY

- PREVIOUS PROJECT (Noya et al., 2019a,b,c; 2020; 2022; Serrano et al., 2020)
- Effects on calf development and metabolic status, with a 19% reduction in weaning weight (Pirenaica breed)
- 12% reduction in slaughter weight, reduced meat tenderness, increased fat deposition in the carcass and alteration of intramuscular fatty acid profile (Pirenaica breed), CRUCIAL TO GUARANTEE BCS at calving and at breeding!!!

Contents lists available at ScienceDirect

Domestic Animal Endocrinology

journal homepage: www.journals.elsevier.com/ domestic-animal-endocrinology

Contents lists available at ScienceDirect

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/rvsc

A negative energy balance during the peri-implantational period reduces dam IGF-1 but does not alter progesterone or pregnancy-specific protein B (PSPB) or fertility in suckled cows

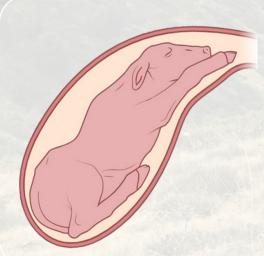
A. Noya, I. Casasús, J.A. Rodríguez-Sánchez, J. Ferrer, A. Sanz*

Centro de Investigación y Tecnología Agroalimentaria (CITA) de Aragón, Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Avenida Montañana 930, 50059 Zaragoza, Spain

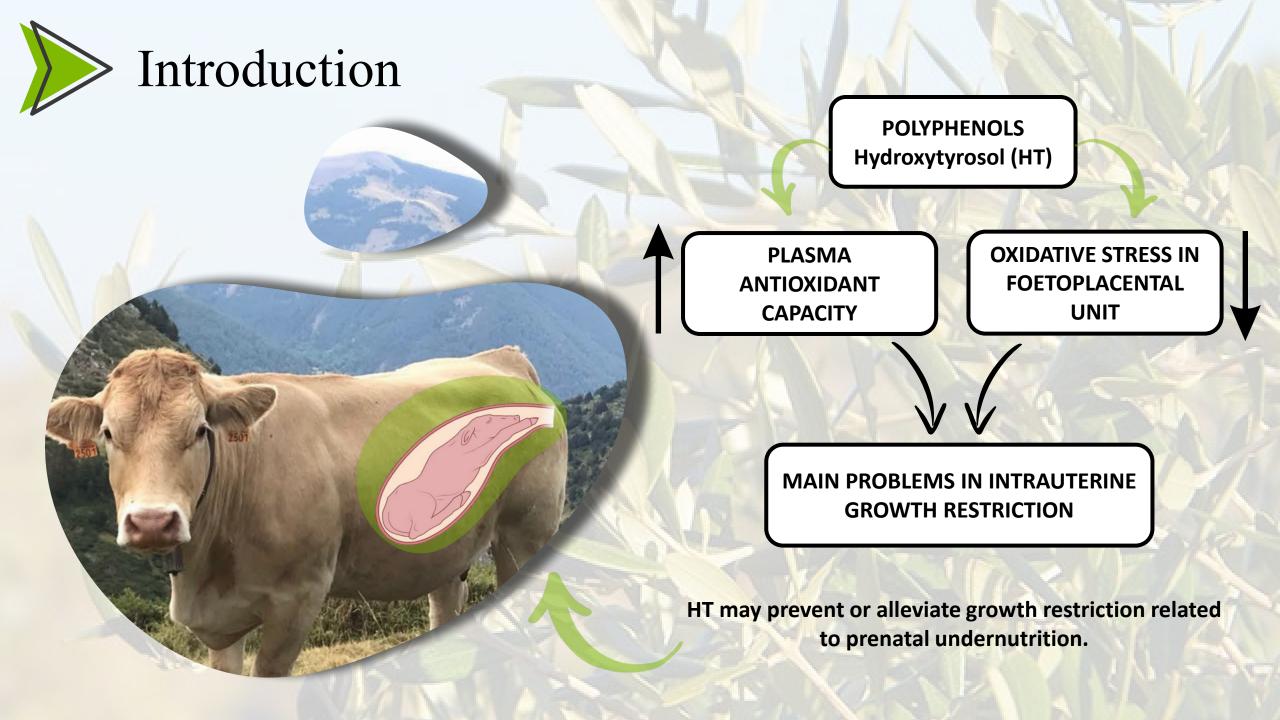
Long-term effects of early maternal undernutrition on the growth, physiological profiles, carcass and meat quality of male beef offspring

Agustí Noya ^{a,b}, Guillermo Ripoll ^{a,b}, Isabel Casasús ^{a,b}, Albina Sanz ^{a,b,*}

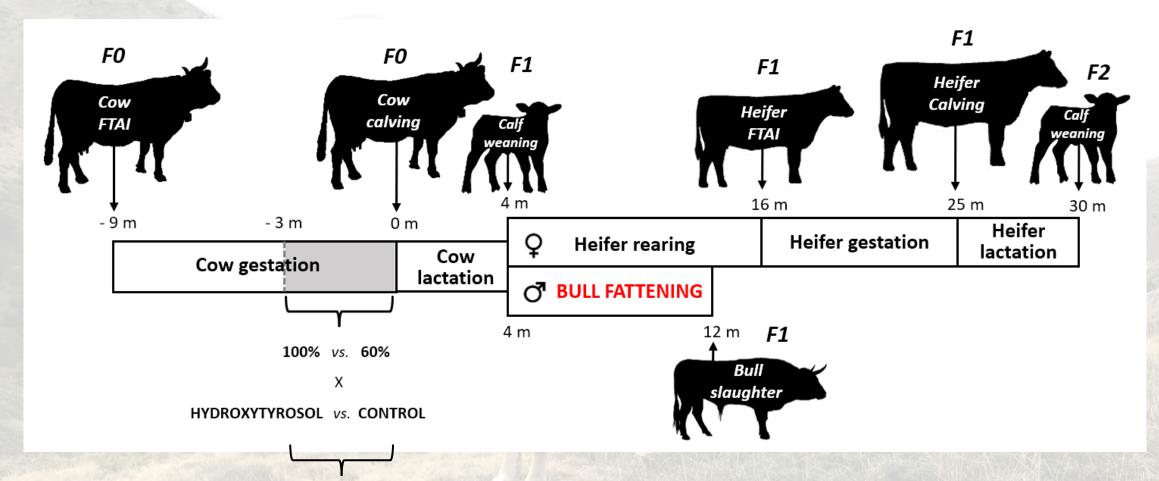
 ^a Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
 ^b Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain



Introduction


SUBNUTRITION (35%) IN THE **FIRST THIRD** OF PREGNANCY

- PREVIOUS PROJECT (Noya et al., 2019a,b,c; 2020; 2022; Serrano et al., 2020)
- Effects on calf development and metabolic status, with a 19% reduction in weaning weight (Pirenaica breed)
- 12% reduction in slaughter weight, reduced meat tenderness, increased fat deposition in the carcass and alteration of intramuscular fatty acid profile (Pirenaica breed)


SUBNUTRITION (40%) IN THE **LAST THIRD** OF PREGNANCY

- CURRENT PROJECT FETALNUT (Noya et al., 2022; Escalera-Moreno et al., 2022-2024; López de Armentia et al., 2022-2024; Akesolo-Atutxa et al., 2023)
- 75% of foetal growth occurs in the last third of gestation
- Effects on productive efficiency in beef cattle.

Introduction > Project FETALNUT

Prenatal and postnatal development
Immune status / Oxidative stress / Lipid metabolism
Performance in mothers and their offspring

Introduction >

López de Armentia et al., 2022 (EAAP)

(* P<0.05: *** P<0.001)

cows

Results All parameters were dependent on the fetus location

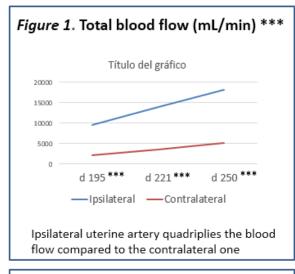


Figure 2. Systolic velocity ipsilateral in uterine artery (cm/s)

*

250

250

150

d 195

d 221

d 250

—CONTROL

SUBNUT

Increase of systolic velocity from d 195
to d 250 higher in undernourished cows

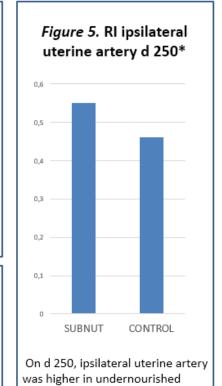
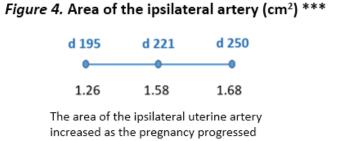



Figure 3. Total uterine artery blood flow (mL/min)

	CONTROL SUBNUT	
d 195	14095 10055 NS	
d 221	21709 14103 *	
d 250	23430 22647 NS	

On d 221, total uterine artery blood flow was lower in undernourished cows

CONCLUSION: Maternal undernutrition may be linked to a lower uterine artery blood flow

Introduction >

Noya et al., 2022 (AERA)

Potential benefits of maternal Hydroxytyrosol supplementation during late pregnancy on calf growth

4 Results

יור עו	Nutr	itional Red	quiremen	ts	Hydroxy	tyrosol (HT)		Bre	ed
Cow performance		100%	60%		HT	Control	Par	da (PA) P	Pirenaica (PI)
LW (calving, I	(g)	660 ^a	613 ^b		631	642		631	642
BCS (calving,	1-5)	3.4 ^a	2.9 ^b		3.2	3.2		3.0 ^b	3.3 ^a
Interaction:	Nut. Requireme	nts x Bree	d	100)%-PA	60%-PA	100%-PI	60%-	PI
Milk yield	(day 21, kg)			1	1.9 ^a	10.1 ^b	9.0 ^b	9.7 ^t)

^{a,b} Means within a row differ P < 0.05

							iviea	ns within a ro	ow differ P < 0.05
\mathcal{M}	1	Nut. F	Requirements	Hydroxy	tyrosol (HT)		Breed		Gender
Calf po	erformance	100	0% 60%	нт	Control	Parda (PA) Pirenaica (PI)	Ma	le Female
	LW (day 0, kg)	47	.2 48.2	49.1ª	46.2 ^b	51.5°	43.9 ^b	49.	7 ^a 45.7 ^b
Interaction:	ADG (d0 - d30,	kg) 1.1	83 1.145	1.137	1.191	1.183	1.145	1.1	29 1.199
Nut. Requirem	nents x HT x Breed	100%-HT-PA	100%-Control-PA	60%-HT-PA	60%-Control-PA	100%-HT-PI	100%-Control-PI	60%-HT-PI	60%-Control-PI
	LW (day 30, kg)	88.4 ^{ab}	92.8ª	93.6ª	91.2ª	89.5 ^{ab}	77.6 ^c	82.1 ^{bc}	82.5 ^{bc}

^{a,b,c} Means within a row differ P < 0.05

5 Conclusion

Despite HT supplementation had no evident effects on dam performance, its inclusion in the dam diet stimulated fetal growth with postnatal effects during lactation.

Acknowledgements: the staff of La Garcipollera Research Station, A14_20R - SAGAS, PID2020-113617RR-C21

7 communications of Project FETALNUT presented in EAAP 2024:

1 oral and 4 poster communications, in Session 4:

- Effects of undernutrition and hydroxytyrosol supplementation during last third of pregnancy on the <u>immune status of suckler cows and their calves</u>.
- Effects of undernutrition and hydroxytyrosol during last third of pregnancy on newborn vitality and cortisol levels on cow-calf pair.
- Interplay between pre-partum nutrition and hydroxytyrosol supplementation on calf behavior.
- Effect of age, undernutrition and hydroxytyrosol supplementation on <u>metabolic</u> stress markers during the last third of gestation in beef cattle.
- Undernutrition and hydroxytyrosol supplementation during the final third of gestation modulate <u>immune response and redox balance</u> in newborn beef calves.

1 oral communication, in Session 83:

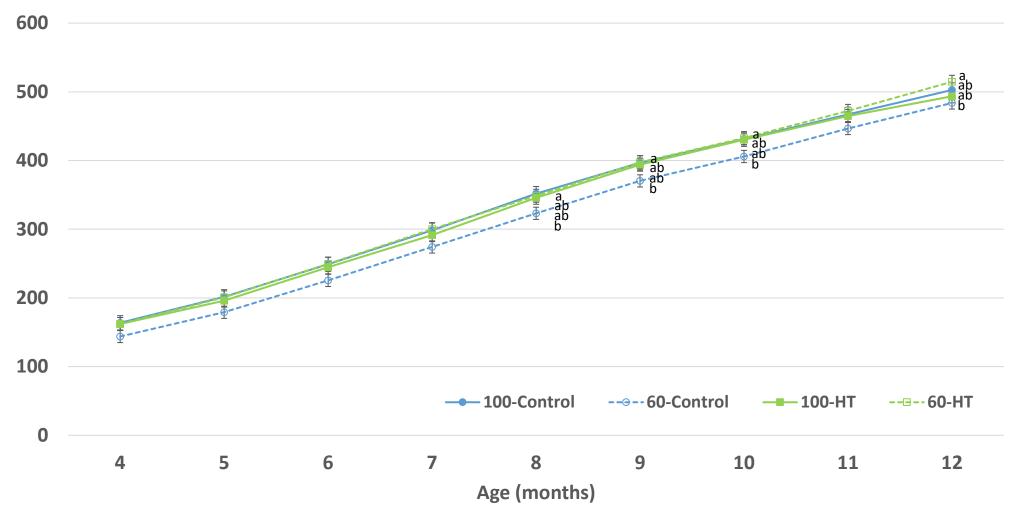
 Effects of undernutrition and hydroxytyrosol supplementation during last third of gestation on growth and physiological profiles of male beef offspring.

1 poster communication, in Session 90:

• <u>In vitro rumen fermentation</u> of forage-based diets supplemented with hydroxytyrosol extracts.

Objectives

Effects of MATERNAL UNDERNUTRITION and HYDROXYTYROSOL (HT, antioxidant from olive leaves) during the last third of pregnancy on live weight (LW), average daily gain (ADG) and physiological profiles on MALE BEEF OFFSPRING during the fattening period (4-12 months of age)



Methodology

- 109 pregnant cows divided into four groups, from week 28 of gestation to calving (w40):
 Feeding level (100 vs. 60% requirements) x HT (Control vs. HT, for 0 and 178 mg HT/kg TMR)
- N = 46 bulls (25 Parda de Montaña (PA) and 21 Pirenaica (PI) breeds).
- Bulls weighed monthly.
- Blood samples collected bi-monthly to determine plasma concentrations of glucose, fructosamine,
 urea, creatinine and IGF-1.
- Data were analysed in R with a mixed linear model with feeding, HT, time and breed as fixed effects, and bull as random effect.

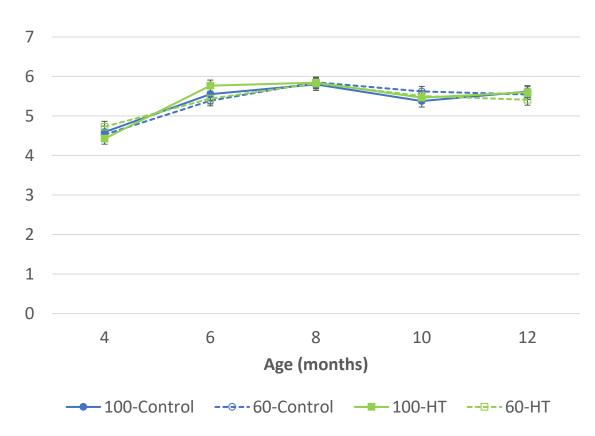
Results > Live Weight (kg)

Figure 1. Liveweight (LW) of bulls during the fattening period according to the interaction of maternal nutrition and hydroxytyrosol (HT). a,b Means at a given age differ at P < 0.05.

Results > Live Weight (LW) and Average Daily Gain (ADG)

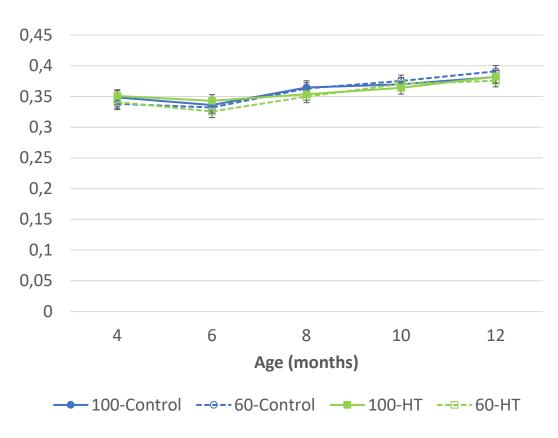
Table 1. Growth performance of bulls during the fattening period a,b Means within the same row differ at P < 0.05

	Maternal nutrition x Hidroxitirosol (HT)					
	100-C	60-C	100-HT	60-HT		
Fattening period (days)	235	236	237	235		
Age of slaughter (days)	355	353	356	356		
LW (Kg)						
At birth	49.5	47.3	50.4	50.4		
Start of fattening	164	144	162	162		
End of fattening	503 ^{ab}	484 ^b	493 ^{ab}	514 ^a		
ADG (Kg)	1.55	1.55	1.57	1.65		


60-HT bulls had a higher LW at slaughter

than 60-Control

HT increased the LW at slaughter of bulls born from cows undernourished in the last third of gestation.



Glucose (mmol / L)

Figure 2. Evolution of glucose levels of bulls during the fattening period according to the interaction of maternal nutrition and HT.

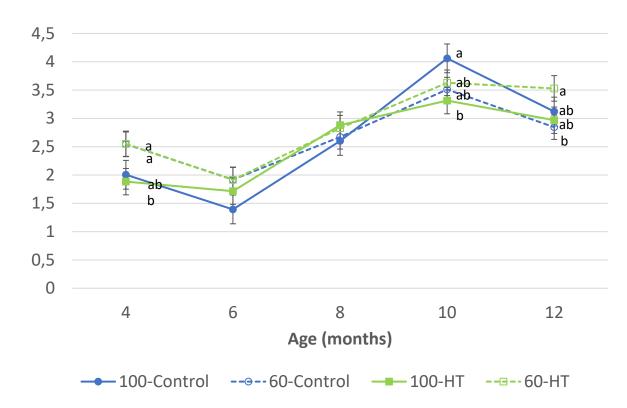
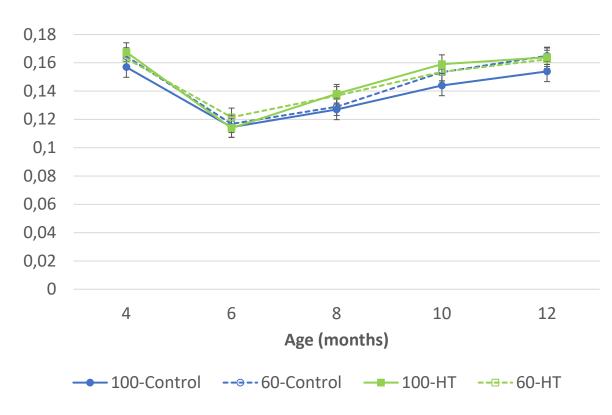

Fructosamine (mmol / L)

Figure 3. Evolution of fructosamine levels of bulls during the fattening period according to the interaction of maternal nutrition and HT.

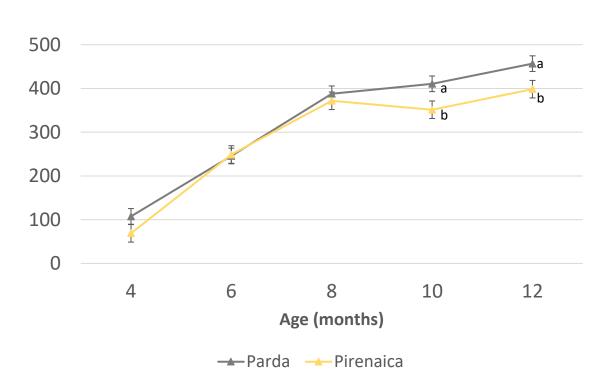


Urea (mmol / L)

Figure 4. Evolution of urea levels of bulls during the fattening period according to the interaction of maternal nutrition and hydroxytyrosol (HT). a,b Medians at a given age differ P < 0.05. **POSTER SESSION 90**

Creatinine (mmol / L)

Figure 5. Evolution of creatinine levels in bulls during the fattening period according to the interaction of maternal nutrition and hydroxytyrosol (HT).


Results > Physiological profiles

IGF-1 (ng / mL)

Figure 6. Evolution of IGF-1 levels of bulls during the fattening period according to the interaction of maternal nutrition and hydroxytyrosol (HT).

IGF-1 (ng / mL)

Figure 7. Evolution of IGF-1 levels of steers during the fattening period according to breed. a,b Means at a given age differ P < 0.05.

Conclusions

- Undernutrition and hydroxytyrosol inclusion in the last third of gestation affected live weight
 at slaughter and urea metabolism of bulls.
- The rest of metabolites (glucose, fructosamine and creatinine) and IGF-1 were not affected by subnutrition or hydroxytyrosol inclusion.
- Analyses of bull morphology, reproductive function (testosterone, testicular parenchyma and histology, ...), fat metabolism (NEFA, subcutaneous fat, adipocyte diameter, leptin, adiponectin levels), gene expression, carcass and meat quality, and epigenetic modifications are ongoing.

With all in mind, take management decisions to allow animals to express their full potential.

The 75th EAAP Annual Meeting

1/5 September 2024 - Florence, Italy

Acknowledgements

- Project funded by MCIN/AEI/ 10.13039/501100011033 (FETALNUT) (Contract for O. Akesolo)
- Grant FPI-AEI from MCIN/AEI (Government of Spain) for L. López de Armentia
- Research group INPASS A25_23R (Government of Aragon)
- Plant biotechnology company ECONATUR

Acknowledgements

The 75th EAAP Annual Meeting

1/5 September 2024 - Florence, Italy

THANK YOU

The 75th EAAP Annual Meeting

1/5 September 2024 - Florence, Italy

Acknowledgements

• Project funded by MCIN/AEI/ 10.13039/501100011033 (FETALNUT) (Contract for O. Akesolo)

Research project "Fetal undernutrition and hydroxytyrosol supplementation in a beef production system" funded by Ministerio de Ciencia, Innovación y Universidades (Government of Spain)

Other 6 communications from FETALNUT presented at the 75th EAAP Annual Meeting

