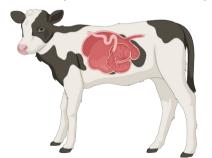


Changes in the plasma metabolome of Holstein heifers from birth to first insemination

<u>Kira J. Hemmert</u>¹, M. H. Ghaffari¹, C. S. Ostendorf^{1,2}, S. Schuchardt³, C. Koch², H. Sauerwein¹

¹ Institute of Animal Science, University of Bonn, Bonn, Germany

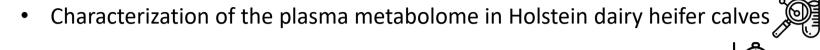

² Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany

³ Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany

Introduction

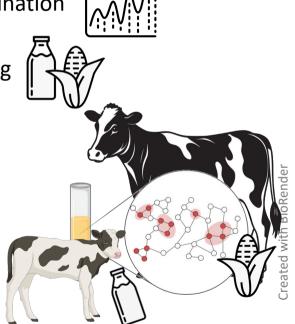
- Rearing period of calves is a key factor for their later productivity and lifespan
- Youngstock: additional requirements of energy for the development of the skeleton, muscles and organs & for an active immunity
- Calf growth and organ development stimulated by milk-feeding at levels close to ad libitum (Hammon et al., 2020)
- Wide ranging anatomical, physiological and microbial changes in the development of the gastrointestinal tract into a fully functional ruminant
 - Impact on digestion, absorption and intermediary metabolism (Meale et al., 2017)

Introduction

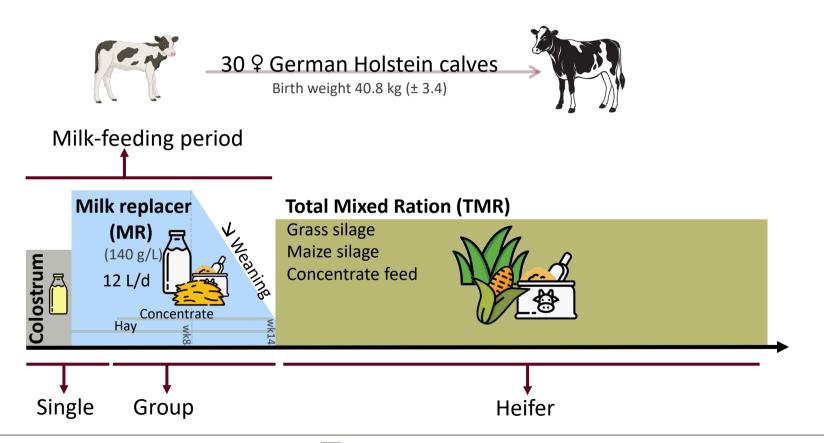

- Metabolomics = identification and investigation of biochemical compounds for describing the metabolic activity of living tissue (Oliver et al., 1998)
- In dairy calves, no specific biomarkers have yet been identified that reflect the biological status at a certain point in time or predict a long-term effect (Leal et al., 2021)
- Associated changes in the metabolome are still poorly understood and are limited to the period up to weaning and shortly thereafter (Leal et al., 2021; Amin et al., 2023)
 - Effects of preweaning nutrient supply & age at weaning were shown to affect growth and the metabolome in blood

→ Research gap for the time after weaning

Objectives



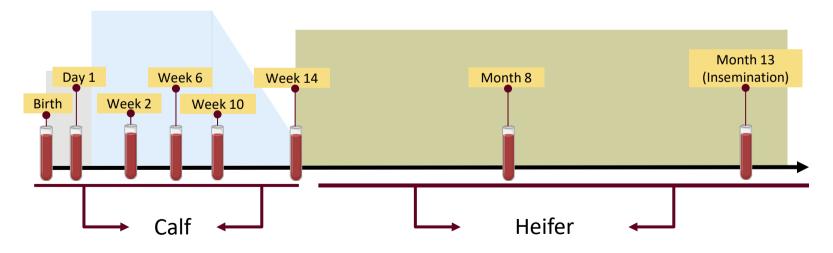
- from birth throughout the rearing period until the first insemination
- including the effects of the dietary changes related to weaning


Hypothesis

 Substantial differences in the metabolite profile, especially when calves transition from liquid to solid feed

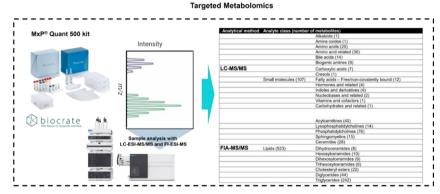
Animals and Feeding

Blood sampling



- (2) Day 1
- (3) Week 2
- (4) Week 6
- (5) Week 10
- (6) Week 14

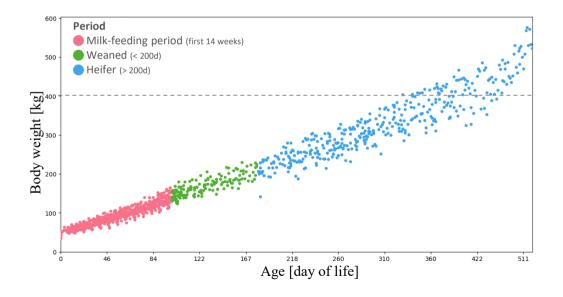
- (7) Month 8
- (8) Month 13 (Insemination)


Metabolomics

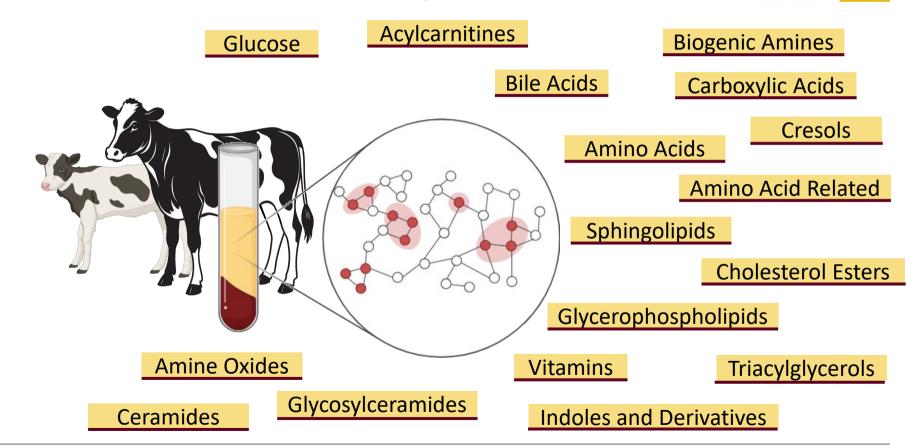
- Plasma obtained was immediately frozen and stored at -80°C
- MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria) was used to determine metabolite concentrations by tandem mass spectrometry
- Only metabolites with less than 20% missing values across all time points were used for analysis

→ 243 metabolites

 summed with all related metabolites to obtain the sum per sample for each compound class

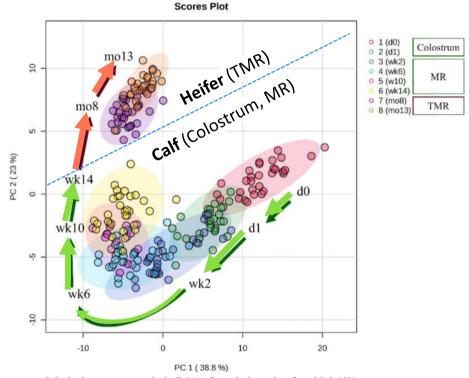

Ghaffari et al. (2024)

Body weight development



ADG milk-feeding period:	994 g/d			
Weaning weight (14 weeks old):	135 ± 12.8 kg			
Age 400 kg (insemination minimum):	395 ± 44 d			

Metabolites in blood: Compound classes



Metabolic profiles

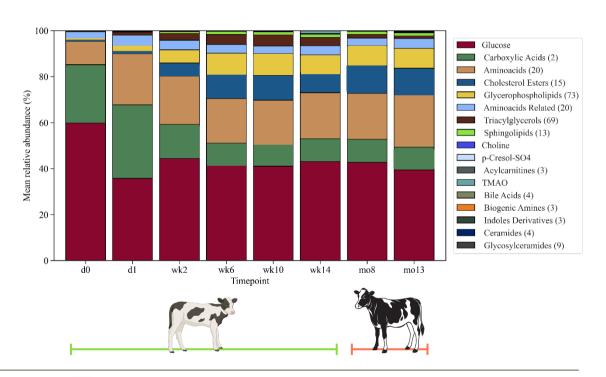
- very distinct by time (aging)
- Most prevalent metabolite classes across all time points:
 - Glucose
 - Amino Acids (n=20)
 - Carboxylic Acids (n=2)
 - Cholesterol Esters (n=15)
 - Glycerophospholipids (n=73)

Principal component analysis (PCA) of metabolome data from birth (d0) to first insemination (mo13). Green arrows = calfhood, red arrows = heifer age

Prevalent metabolite classes

	1 (d0)	2 (d1)	3 (wk2)	4 (wk6)	5 (wk10)	6 (wk14)	7 (mo8)	8 (mo13)
1	(40)	(41)	(WKZ)	(WKO)	(WK10)	(**************************************	(moo)	(111013)
1.	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose	Glucose
2.	Carboxylic Acids	Carboxylic Acids	Amino Acids	Amino Acids	Amino Acids	Amino Acids	Amino Acids	Amino Acids
3.	Amino Acids	Amino Acids	Carboxylic Acids	Cholesterol Esters	Cholesterol Esters	Carboxylic Acids	Cholesterol Esters	Cholesterol Esters
4.	Amino Acids	Amino Acids	Glycero-	Carboxylic	Glycero-	Cholesterol	Carboxylic	Carboxylic
	Related	Related	phospholipids	Acids	phospholipids	Esters	Acids	Acids
5.	Glycero- phospholipids	Glycero- phospholipids	Cholesterol Esters	Glycero- phospholipids	Carboxylic Acids	Glycero- phospholipids	Glycero- phospholipids	Glycero- phospholipids

Relative abundance of compound classes

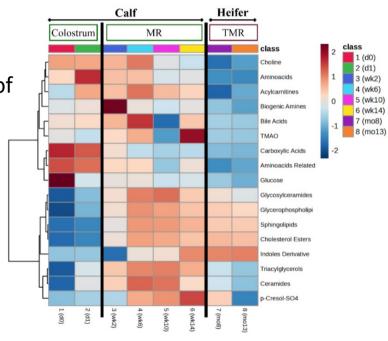

The development of the heifers was associated with

Carboxylic Acids

- **Cholesterol Esters**
- Glycerophospholipids Sphingolipids

Changes of each class

An age effect was identified in each class of compounds analyzed


Calf vs. Heifer

- Preweaned calves higher total concentrations of
 - Amino Acids
 - Amino Acid-related metabolites
 - Acylcarnitines
 - Choline

Weaning

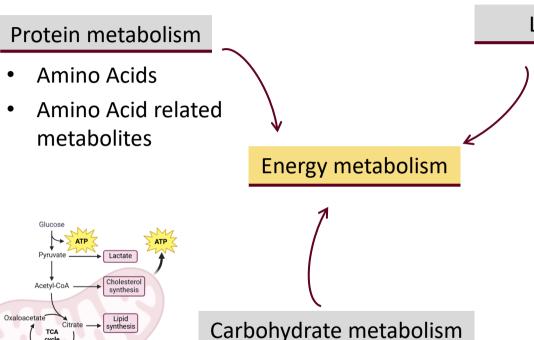
- p-Cresol-SO4 (Week 14)
- Indoles and Derivatives (Week 14)

Heatmap analysis visualizing the metabolic changes of the compound classes in Holstein dairy heifers due to heifers' age.

Peaks in concentration during milk-feeding period

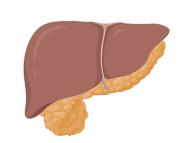
At one or two consecutive time points:

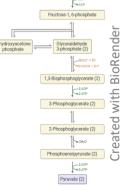
- Biogenic Amines Week 2
- Bile Acids Week 6
- Ceramides
 Week 6 & Week 10
- Trimethylamine N-oxide (TMAO) Week 14


Timepoint

	1	2	3	4	5	6	7	8
Class	(d0)	(d1)	(wk2)	(wk6)	(wk10)	(wk14)	(mo8)	(mo13)
Glucose	18253	6212 ^{ac}	6760°	6845 ^{ac}	5905 ^{abc}	6200ª	5013ª	4409 ^b
Carboxylic Acids	8225ª	5606 ^b	2269 ^c	1582 ^c	1295 ^c	1441 ^c	1207 ^c	1074 ^c
Amino Acids	3159 ^a	3884 ^b	3182ª	3194ª	2839 ^{ae}	2884 ^{ac}	2331 ^{cd}	2230 ^{de}
Cholesterol Esters	137ª	185ª	866	1750 ^b	1537 ^{bc}	1254 ^c	1399 ^c	1248 ^c
Glycerophospholipids	172	393	879ª	1541 ^b	1378 ^b	1117 ^c	1033 ^{ac}	912 ^{ac}
Amino Acids Related	884ª	820 ^a	635 ^b	630 ^b	461 ^{cd}	589 ^{bc}	387 ^{de}	406 ^e
Triacylglycerols	57ª	246ª	492°	739 ^d	727 ^d	542 ^{cd}	195ª	124ª
Sphingolipids	31 ^a	36ª	90	162 ^b	159 ^b	141 ^{bc}	122 ^{cd}	115 ^d
Choline	21.01 ^a	20.47 ^{abd}	20.67 ^{acd}	23.32bc	15.07 ^{de}	14.50e	8.84 ^f	10.90e ^f
P-Cresol-SO4	2.92ª	3.93ª	6.03	18.32	31.97 b	47.76 ^c	42.89 ^{bcd}	49.72 ^d
Acylcarnitines	9.87a	18 ^{bcde}	16 ^{bdf}	22 ^c	16 ^{dg}	14 ^{efg}	6.54ª	8.8ª
TMAO	5.08ª	2.69 ^a	11.16ª	17.09ª	11.81 ^a	169.85	6.83ª	7.10 ^a
Bile Acids	3.4ª	3.61 ^a	5.81 ^a	16.4	0.81 ^a	5.64ª	1.44 ^a	1.43ª
Biogenic Amines	3.31ª	3.59ª	7.36	3.61a	3.1ª	3.39 ^a	2.69a	2.51 ^a
Indoles Derivatives	1.21 ^a	1.34 ^{abcd}	0.74 ^{ab}	2.99 ^{cd}	3.37 ^d	6.83 ^e	6.75 ^e	6.9 ^e
Ceramides	0.25ª	0.67 ^{bc}	0.84 ^b	1.42 ^d	1.31 ^d	0.78 ^{bc}	0.58 ^{ce}	0.42 ^{ae}
Glycosylceramides	0.88	1.50	2.56a	4.18 ^b	4.40 b	3.01 ^{ac}	2.52 ^{acd}	2.16 ^{ad}

 $^{^{\}text{a--f}}$ Means (µmol/L) within a row with different letters differ (P < 0.001).


Affected biological processes



Lipid metabolism

- Cholesterol Esters
- Glycerophospholipids
- Acylcarnitines
- Sphingolipids
- Carboxylic acids
- (Choline)

Glucose

Glucose-6-phospha

Fructose-6-phosphate

Glucose

Succinvl-CoA

Conclusion

- Plasma metabolome of Heifers undergoes ongoing changes during growth
 - → Availability of nutrients and physical development during this period are closely linked to later production performance
- First study characterizing these changes during the first year of life using detailed metabolome profiling at 8 time points
- Gap of knowledge between weaning and first calving
 - → at least partly filled with our analyses from the 8th to the 13th month of life

Outlook

- The same heifers were further monitored until first calving
 - → additional insights into the relation between the rearing period and later development and performance upon entering the dairy herd

Thank you for your attention!

Kira Hemmert

hemmert@uni-bonn.de
Institute of Animal Science, University of Bonn (Germany)

Research was funded by the German Federal Ministry of Food and Agriculture With support from

by decision of the German Bundestag

References

Amin, N., S. Schwarzkopf, J. Tröscher-Mußotter, A. Camarinha-Silva, S. Dänicke, K. Huber, J. Frahm, J. Seifert (2023): Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Animal Microbiome 5 (1), https://doi.org/10.1186/s42523-023-00233-z.

Ghaffari, M. H.; M. V. Sanz-Fernandez, H. Sadri, H. Sauerwein, S. Schuchardt, J. MartínTereso, J. B. Daniel (2024): Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next one: Investigations in the liver. J. Dairy Sci. https://doi.org/10.3168/jds.2023-24432.

Hammon, H. M.; W. Liermann, D. Frieten, C. Koch (2020): Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 14 (S1), https://doi.org/10.1017/S1751731119003148.

Kenéz, Á.; C. Koch, M. Korst, J. Kesser, K. Eder, H. Sauerwein, K. Huber (2018): Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 3: Plasma metabolomics analysis reveals long-term metabolic imprinting in Holstein heifers. J. Dairy Sci. 101 (9), https://doi.org/10.3168/jds.2018-14559.

Leal, L. N.; J. Doelman, B. R. Keppler, M. Steele, J. Martín-Tereso (2021): Preweaning nutrient supply alters serum metabolomics profiles related to protein and energy metabolism and hepatic function in Holstein heifer calves. J. Dairy Sci.104 (7), https://doi.org/10.3168/jds.2020-19867.

Meale, S. J.; F. Chaucheyras-Durand, H. Berends; L. Le Guan, M. Steele (2017): From pre- to postweaning: Transformation of the young calf's gastrointestinal tract. J. Dairy Sci. 100 (7), https://doi.org/10.3168/jds.2016-12474.

Oliver, S. G., M. K. Winson, D. B. Kell, and F. Baganz (1998): Systematic functional analysis of the yeast genome. Trends Biotechnol. 16:373–378. https://doi.org/10.1016/S0167-7799(98)01214-1.