

# Twin birth rate in German Holsteins: related to increased milk yield and fertility level?

# **Project motivation / Introduction**

- Twin births are undesired due to their negative impacts on cows and calves
- A twin birth is very likely to cause high economic losses
- Many farmers are reporting increasing twin birth rates
- Relationship with milk and fertility (multiple ovulation) is often reported

**Objective:** using population-wide data of German Holstein cows to characterize the trait twin births

- Estimation of variance components
- Calculate genetic correlations of twin births with milk, fertility, longevity

# Conclusion

Twin births are lowly heritable

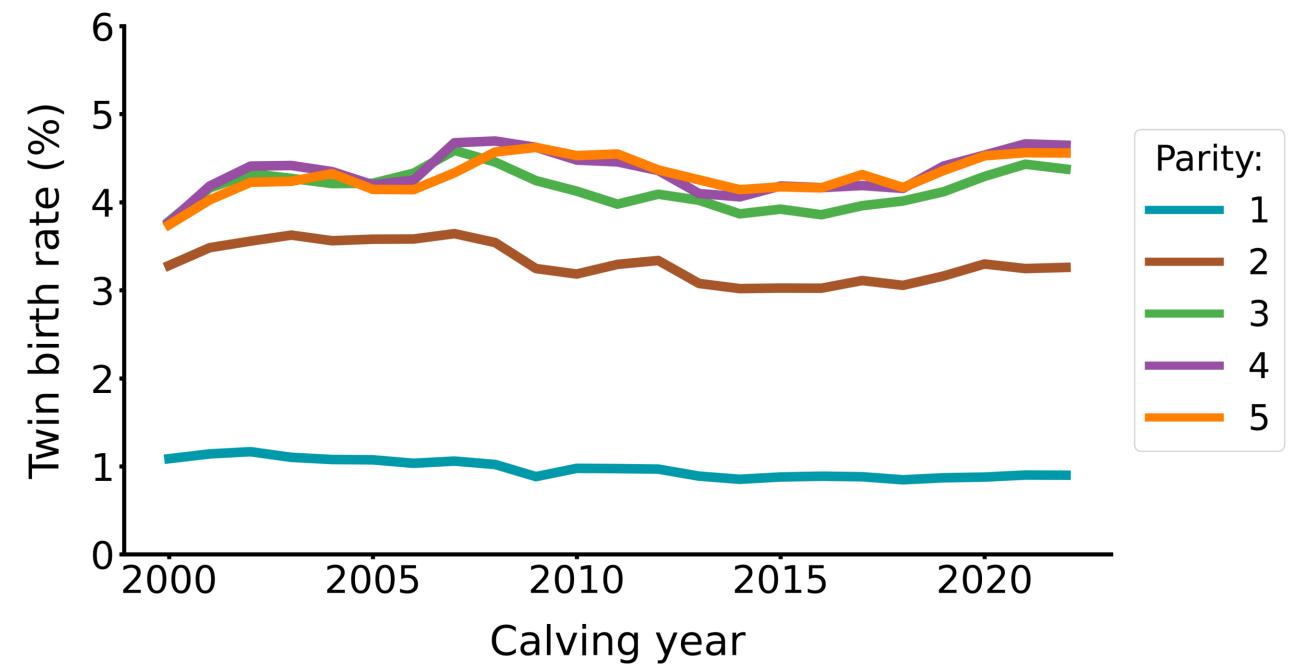
Although a phenotypic relationship between twin births and milk traits is observed, there is **no genetic correlation** 

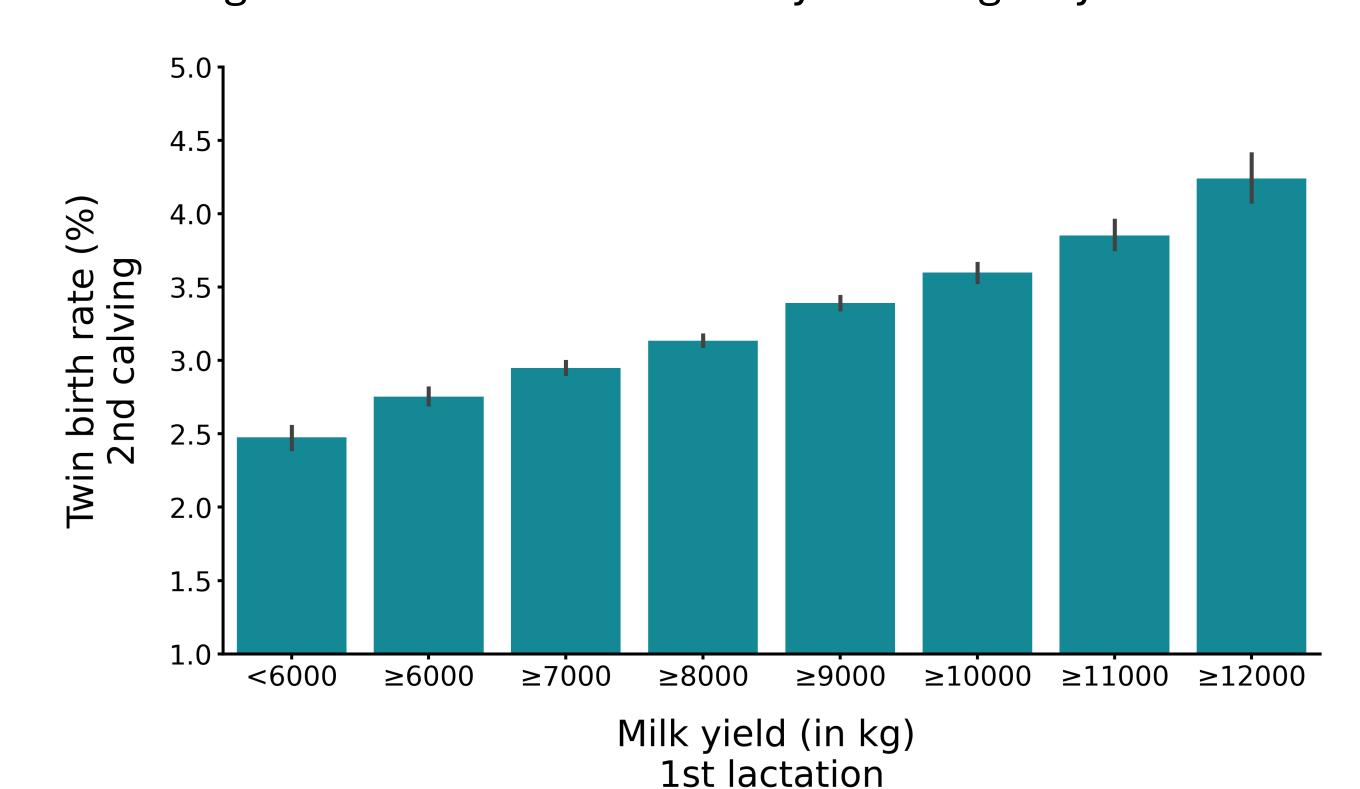
Low genetic correlations with fertility and longevity

Selection against twin births could be possible without having undesired indirect selection effects

### Results

No phenotypic trend of twin births over the last 20 years





Figure 1: Phenotypic trend of twin births per parity (N=37,144,489 calvings)

- Prevalence is much higher for  $\geq 2^{nd}$  parity.  $h^2$  is larger in higher parities
- Genetic correlation is 0.879 between 1<sup>st</sup> and higher parities and even stronger among higher parity numbers (0.986)

**Table 1:** Characteristics and heritability of the two twin birth traits

|                                    | 1 <sup>st</sup> parity | ≥2 <sup>nd</sup> parity |  |
|------------------------------------|------------------------|-------------------------|--|
| Calvings (N)                       | 4,276,644              | 9,189,834               |  |
| Prevalence (%)                     | 0.87                   | 3.83                    |  |
| h <sup>2</sup> <sub>linear</sub>   | 0.008<br>(± 0.0004)    | 0.026<br>(± 0.0008)     |  |
| h <sup>2</sup> Dempster-Lerner [a] | 0.128<br>(± 0.0062)    | 0.138<br>(± 0.0042)     |  |
| Genetic correlation                | 0.879 (± 0.0117)       |                         |  |

- No genetic correlation to production traits but high phenotypic relationship
- Low genetic correlation to fertility and longevity



**Figure 2:** Twin birth rate in 2<sup>nd</sup> parity per production level of 1<sup>st</sup> lactation

**Table 2:** Genetic correlation of twin birth (1<sup>st</sup> parity/≥2<sup>nd</sup> parity)

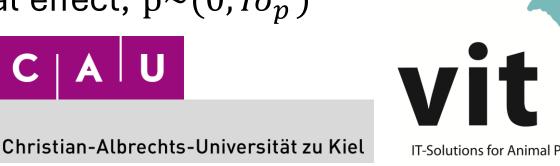
| Milk                    | Milk yield (kg)                 | Fat (kg)              | Protein (kg) |
|-------------------------|---------------------------------|-----------------------|--------------|
| 1 <sup>st</sup> parity  | 0.048                           | -0.008                | 0.053        |
| ≥2 <sup>nd</sup> parity | 0.062                           | 0.004                 | 0.106        |
| Fertility               | First to sucessful insemination | Non-Return-Rate<br>56 | Longevity    |
| 1 <sup>st</sup> parity  | 0.154                           | 0.004                 | -0.156       |
| ≥2 <sup>nd</sup> parity | 0.121                           | 0.004                 | -0.122       |

## Material and methods

The phenotypes of **13,466,478** Holstein cows were used to calculate pedigree-based variance components and genetic correlations using the software ASReml<sup>[b]</sup>.

Twin births were defined as two traits:

- Twin births in 1<sup>st</sup> parity
- Twin births in ≥2<sup>nd</sup> parity (repeated measures)


# Literature

[a] Dempster, E.R., and I.M. Lerner. 1950. Heritability of Threshold Characters. Genetics 35:212–236.
[b] Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. and Thompson, R. (2014): ASReml User Guide Release 4.1 Structural Specification, VSN International Ltd, Hemel Hempstead, HP1 1ES, UK www.vsni.co.uk

A bivariate mixed linear sire model was used:

$$y = Xb + Za + Ep + e$$

- y: twin birth in 1<sup>st</sup> parity or ≥2<sup>nd</sup> parity (0/1)
- **b**: fixed effects: herd-year, year-season, sexed semen for ≥2<sup>nd</sup> parity additionally: calving number
- **a**: random effect: sire additive genetic effect,  $a \sim (0, A\sigma_a^2)$
- **p**: for ≥2<sup>nd</sup> parity: permanent environmental effect,  $p \sim (0, I\sigma_p^2)$
- **e**: error term,  $e \sim (0, I\sigma_e^2)$
- X, Z, E: incidence matrices

