A MULTI-BREED GENOME-WIDE ASSOCIATION STUDY FOR TEMPERAMENT IN THREE ITALIAN BEEF CATTLE BREEDS

Colombi D.^{1*}, Perini F.², Sbarra F.³, Quaglia A.³, Costilla R.⁴, Lasagna E.¹

¹Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy, ²Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy, ³National Association of Italian Beef-Cattle Breeders (ANABIC), 06132 San Martino in Colle (PG), Italy, ⁴AgResearch Limited, Ruakura Research Centre, Hamilton, 3214, New Zealand

*Corresponding author: daniele.colombi@dottorandi.unipg.it

Fig. 2: Chianina

Fig. 3: Romagnola

Introduction

Marchigiana (Fig. 1), Chianina (Fig. 2), and Romagnola (Fig. 3) are local Italian beef cattle breeds characterized by their large size, posing a real risk of injury the personnel and damage to properties during management. The temperament trait plays indeed an important and increasingly role in breeding plans due to the benefits it can bring to farm productivity, animal welfare, and safety. A genetic component in the manifestation of temperament is also well documented and could be related to various biochemical, hormonal, and neurological factors. The aim of this study was to detect potential genomic associations for the temperament phenotype within three Italian beef cattle breeds in a multi-breed dataset of young bulls in performance test.

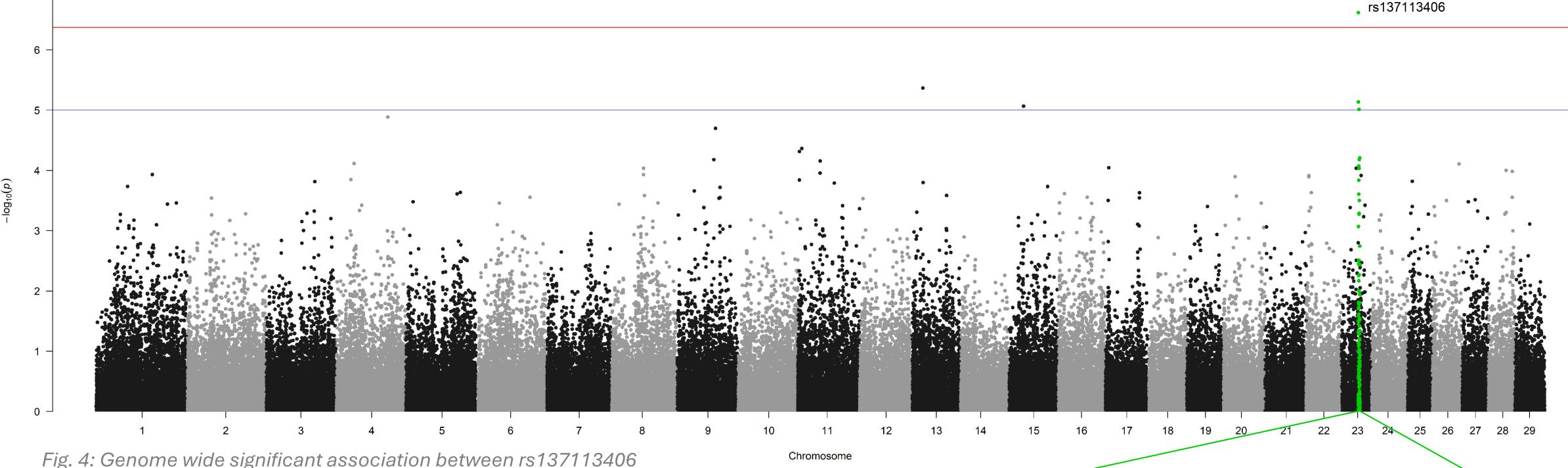
Temperament

 σ^2 0.44 (0.26)

 σ_{e}^{2} 0.60 (0.21)

h² **0.41** (0.22)

Tab. 1: Posterior means and standard deviations of additive genetic variance (σ_a^2), residual variance (σ_e^2), and heritability (h^2).


Materials and methods

A total of 228 animals (84 Marchigiana, 78 Chianina, 63 Romagnola) were phenotyped for temperament and genotyped using the GeneSeek Genomic Profiler Bovine HDv3 150K chip (Illumina Inc., San Diego, CA, USA). Temperament was recorded as a linear score during 12 different stages and manipulations by assessors during the performance test, and the final values were rank-based transformed with GenABEL package in R. Genotypes where quality controlled with BITE package in R (id.cr<0.95; snp.cr<0.95; MAF<0.05; hweq<10⁻⁶), resulting in 117,662 SNPs for genome-wide association study.

Breed, year, and month of birth were included in the models.

Variance components and heritability (Tab. 1) were estimated by Gibbs sampling with Gibbsf90+ software (100,000 cycles, 1,000 burnin, 10 thinning interval).

GWAS was performed with GEMMA software, employing a univariate linear mixed model.

and temperament in Italian beef cattle breeds. The red line represents the Bonferroni-corrected threshold of significance.

Results & conclusions

The results highlighted a significant SNP (rs137113406) on BTA23 associated with temperament (P-value 1.30×10^{-7}) (Fig. 4). This SNP mapped inside the largest cluster of olfactory receptor genes in the cattle genome, and close to GABBR1 gene (Fig. 5). Animal olfaction, olfactory receptor genes, and receptor-coding genes for GABAergic synapses are primarily related to animal behaviour and responses to stimuli.

Further studies with higher amount of data will be necessary to validate this locus and estimate other QTLs associated to docility. Nevertheless, the results suggest the potential for genomic and marker-assisted selection on temperament traits, which could improve animal welfare, social sustainability, and animal productions.

chr23: 30,000,000 29,500,000 30,500,000 Ensembl Gene Predictions - 104 OR2B2D U6 | OR12D23 H2BC14 ZKSCAN8 NSBTAT00000045135.3 OR12D20 OR2W1 ZSCAN16 H2AC14 ZNF165 OR2G1 ZNF165 OR2W6 OR1F12 OR14J12 OR2B8K OR2H18 H4C13 } OR2H1D OR2B37 ZKSCAN8 OR2H1 OR2H20 H2AC17 ZSCAN26 OR2B7C bta-mir-12033 OF 12D2E OR2H19 ZSCAN26 ENSBTAT00000054426.3 ZSCAN26 OR2I1P ENSBTAT00000052926.3 NKAPLI OR10C1 OR12D21 OR11W1 OR5V1C OR14J1 OR11A12 OR12D20 ENSBTAT00000008315.3 NSBTAT00000080063.1 OR105P1 NSBTAT00000081907.1 ENSBTAT00000054810.2 ENSBTAT00000074843.1 ENSBTAT00000084256.1

Fig. 5: A highlight on BTA23:29000000-31000000, the largest olfactory receptor gene cluster in bovine genome (Lee et al. BMC Genomics (2013) https://doi.org/10.1186/1471-2164-14-596). The red line represent the significative SNP.

