

Institute of Animal Science

DEVELOPMENT OF A SELECTION INDEX FOR RESILIENCE IN GERMAN HOLSTEIN

Franziska Keßler, Robin Wellmann, Jörn Bennewitz

Florence, 04th September 2024

"The ability of an individual to cope with short-term disturbances and to perform as before with equilibrium restored."

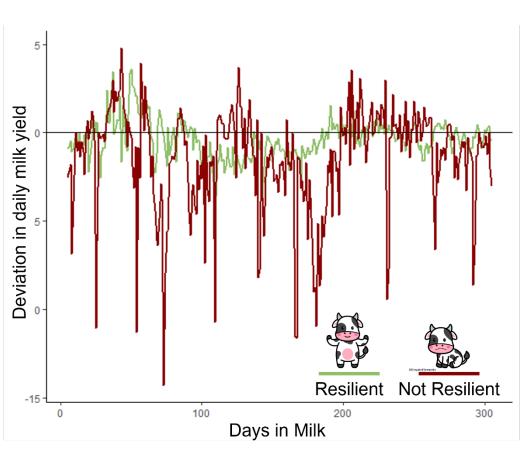
based on Colditz and Hine 2016 & Berghof et al. 2019

PHENOTYPING AND MEASURING

- Phenotyping and measuring resilience pose a challenge
- Applicati
 - Examp
- Assumpt
 - An anir measul

Our Study

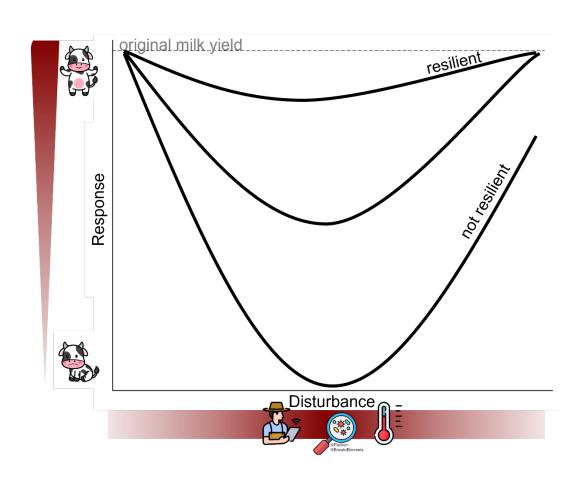
Analysing the daily milk yield of dairy cows of the German Holstein breed


- > Clear definition of the period under consideration for comparability
- **Example:** A cow's daily milk yield during a lactation period drops due to several reasons like heatwaves, changing food quality or social stressors

ts

gitudinally

RESILIENCE INDICATOR TRAITS – VARIANCE


- Showing the fluctuation in performance
- Analyses in previous studies described (Poppe et al. 2020; Chen et al. 2022; Keßler et al. 2024)
 - moderate heritabilities
 - desirable genetic correlations with performance traits*
 - desirable genetic correlations with health traits

^{*} when corrected for the performance level

RESILIENCE INDICATOR TRAITS – AUTOCORRELATION

- Indication of the duration of the recovery phase after a disturbance
- Analyses in previous studies described (Poppe et al. 2020; Keßler et al. 2024)
 - low heritabilities
 - less significant genetic correlations with performance traits
 - weak, but desirable correlations with health traits

METHODS – MATERIALS

METHODS – RESILIENCE INDICATOR TRAITS

- Calculation based on daily milk yield (DMY) of day 10 to 305 per lactation
- Modelling of the predicted daily milk yield with p-spline interpolation
- Exclusion of disturbed days

 $oldsymbol{v}$ Ln Variance of absolute DMY $oldsymbol{v}_d$ Ln Variance of deviation between observed and predicted absolute DMY

 v_r Ln Variance of relative DMY

 v_{rd} Ln Variance of deviation between observed and predicted relative DMY

 r_{Auto} Autocorrelation of deviation between observed and predicted absolute DMY

METHODS – STATISTICAL ANALYSES

$$y = Xb + Zu + Wpe + e$$

y vector of phenotypic observations

b vector of fixed effects

(Age at first calving, Lactation, Herd-Year-Season, Completeness of Lactation)

u vector of additive genetic effects; $u \sim N(0, A\sigma_u^2)$

pe vector of permanent environment effects

e vector of residual effects

W, X, Z incidence matrices

METHODS – SELECTION INDEX

• Composition of selection index resilience $SI_{resilience}$:

$$SI_{resilience} = w_v * EBV_v + w_{v_d} * EBV_{v_d} + w_{v_r} * EBV_{v_r} + w_{v_{rd}} * EBV_{v_{rd}} + w_{r_{Auto}} * EBV_{r_{Auto}}$$

• Maximisation of joint breeding response R of $SI_{resilience}$ with the selection index health SI_{health} (provided by vit) using the L-BFGS algorithm:

$$R = \sqrt{h_{SI_{resilience}}^2 * r_{\chi_{SI_{resilience}} y_{SI_{health}}}}$$

$$h_{SI_{resilience}}^2$$

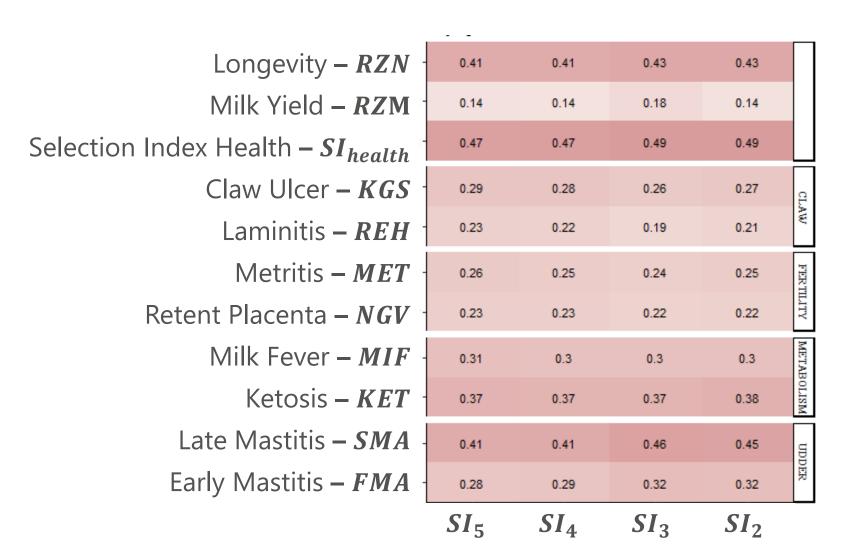
$$r_{\chi_{SI_{resilience}} y_{SI_{health}}}$$

heritability of
$$SI_{resilience}$$
, with $h_{SI}^2 = \frac{V_A}{V_P} = \frac{w^T \Omega_A w}{w^T \Omega_P w}$

Pearson correlation between $SI_{resilience}$ and SI_{health}

RESULTS - OPTIMISED SELECTION INDEX RESILIENCE

• Showing selection indices with maximum joint breeding response $R_{SI_{health}}$ with different numbers of integrated resilience indicator traits

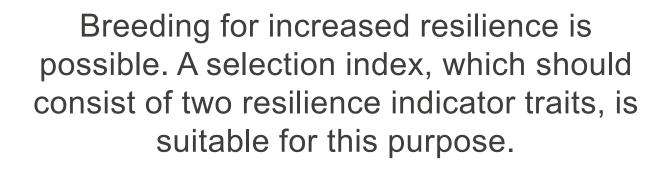

Selection index resilience consisting of $h^2_{cl} = r$							R
υ	v_d	r_{Auto}	v_r	v_{rd}	n ² SI _{resilience}	,	NSI _{health}
-1.377	1.925	-0.076	1.809	-1.281	0.227	0.467	0.222
-1.219	1.730		1.624	-1.135	0.224	0.468	0.221
-0.319	0.753		0.566		0.201	0.491	0.220
	0.654		0.346		0.196	0.492	0.218

 \rightarrow Minor deviations in joint breeding response $R_{SI_{health}}$ between differently composed selection indices $SI_{resilience}$ indicate a weak optimum

RESULTS – CORRELATION TO ESTABLISHED TRAITS

Pearson
 Correlation
 between resilience indicator traits and indices with established EBVs for health

DISCUSSION – SELECTION INDEX RESILIENCE


- Correlations between resilience indicator and health traits were desirable
 - > Resilient animals are healthier
 - ➤ Results similar to previous studies (Poppe et al. 2020; Chen et al. 2022)
- Optimization of the selection index resilience based on maximizing the joint breeding response with SI_{health}
 - \triangleright Mapping of the most comprehensive, precise resilience possible, as SI_{health} consists of 13 individual health traits
- Selection index resilience should consist of two resilience indicator traits
 - Joint breeding response increases only slightly
 - Advantages due to less computational effort and increased comprehensibility

DISCUSSION – REASONS FOR BREED FOR RESILIENCE

- Response to unmeasurable external influences (Poppe et al. 2021)
 - Unknown, external influences such as heat waves are currently not recorded and the response of individuals to them is not taken into account in selection decisions
- Antagonism between performance and health (Heringstad and Larsgard, 2010; Heringstad et al. 2007)
 - Performance and health traits are undesirably correlated with each other, causing the EBVs of a trait group to decrease in the case of biased selection
- Poor collection of health data
 - > Health data is rarely collected, partly incomplete and sometimes subjective
- Assumption: Improvement in economic profit (Berghof et al. 2018; Poppe et al. 2022)
 - Stable and homogeneous herds are easier to manage and resilient individuals are more profitable

CONCLUSION

EIP-PROJECT "KLIMAFIT"



The project is funded by the European Innovation Partnership "Agricultural productivity and Sustainability" (EIP-AGRI). The funding measure is a measure of the "Maßnahmen- und Entwicklungsplan Ländlicher Raum Baden-Württemberg 2014-2022" (MEPL III). The project is funded by the State of Baden-Wuerttemberg and by the European Agricultural Fund for Rural Development (EAFRD).

