

Genetic analysis of anogenital distance in dairy cattle

<u>Gabriella R. Dodd¹</u>, F. Miglior^{1,2}, F.S. Schenkel¹, T.C. Bruinjé³, M. Gobikrushanth⁴, J.E. Carrelli⁵, M. Oba⁵, D.J. Ambrose⁵, C.F. Baes^{1,6}

¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada; ²Lactanet, Guelph, ON, Canada; ³Department of Population Medicine, University of Guelph, ON, Canada; ⁴School of Veterinary Science, University of Queensland, Gatton, Australia; ⁵Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; ⁶Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Abstract #: 2213430

Dairy Cattle Fertility: Current Challenges

Complex and multifaceted trait

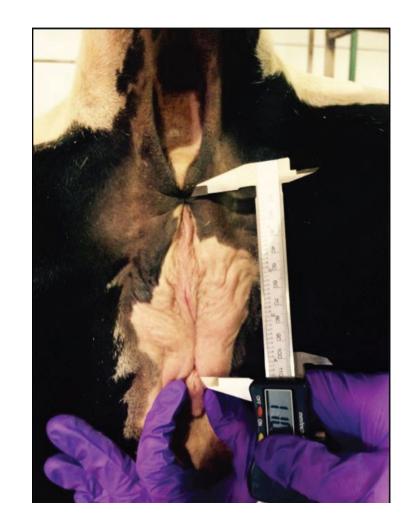
Conception, pregnancy maintenance, calving, and post-calving cyclicity

Current indicators

Calving to First Service (CTFS), Non-Return Rate at 56d (NRR)

Slow improvement

- Low heritability of traits used ($h^2 \le 0.10$)
- Highly influenced by environment and management


Anogenital Distance (AGD)

Distance from the anus to the base of the clitoris

Phenotypic variation attributed to *in utero* exposure to **androgens**

- Reproductive programming window
- High exposure leads to elongation

Associations with Fertility

Shorter AGD is favorably associated with reproductive success in cows and heifers

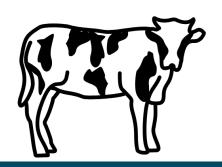
Trait	Relationship with Short AGD
Age at Puberty	→
Pregnancy per First AI (Cow)	↑
Pregnancy per First AI (Heifer)	↑
Pregnancy at 450d of age	↑

Genetic Potential

- Moderate heritability estimates
- Strong genetic correlation estimated between AGD in heifers and primiparous cows (0.89 ± 0.05)^b

Heritability	Breed	Country	Parity	Data Size
0.37 ± 0.08	Holstein-Friesian	Ireland ^a	Parities 0-3+	1,180
0.23 ± 0.03	Holstein-Friesian	New Zealand ^b	Heifers	5,010
0.29 ± 0.05	Holstein-Friesian	New Zealand ^b	First parity cows	1,956

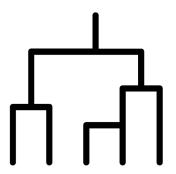
Objectives


1. Estimate variance components and breeding values

2. Assess the reliability of breeding values

3. Evaluate inclusion of genomic information

Data



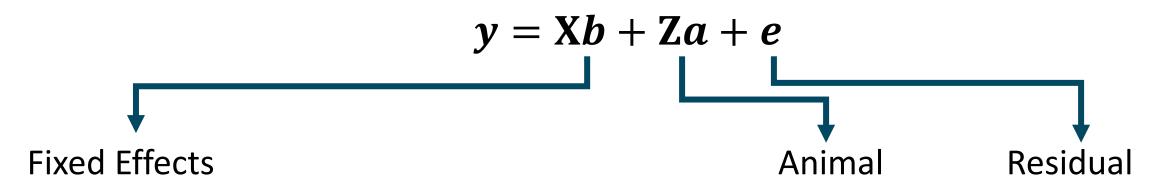
PHENOTYPE

864 Heifers 4,124 Cows

*No repeated records

PEDIGREE

26,959 Animals (8 Generations)


GENOTYPE

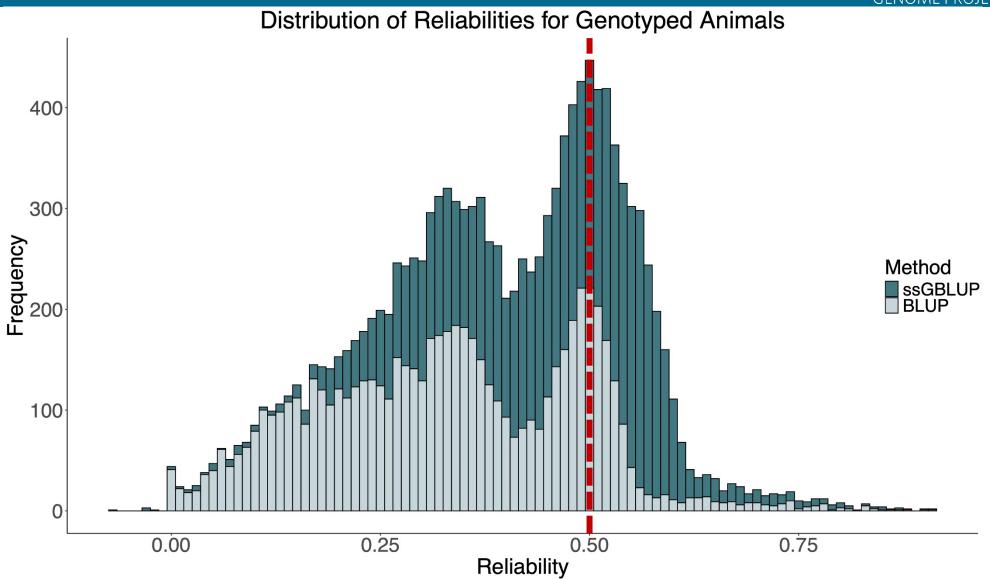
1,520 Phenotyped 5,111 Unphenotyped

Variance Component Estimation

- Recording technician
- Age at measurement (quadratic regression)
- Days since calving (linear regression)
- Herd-year-season at birth

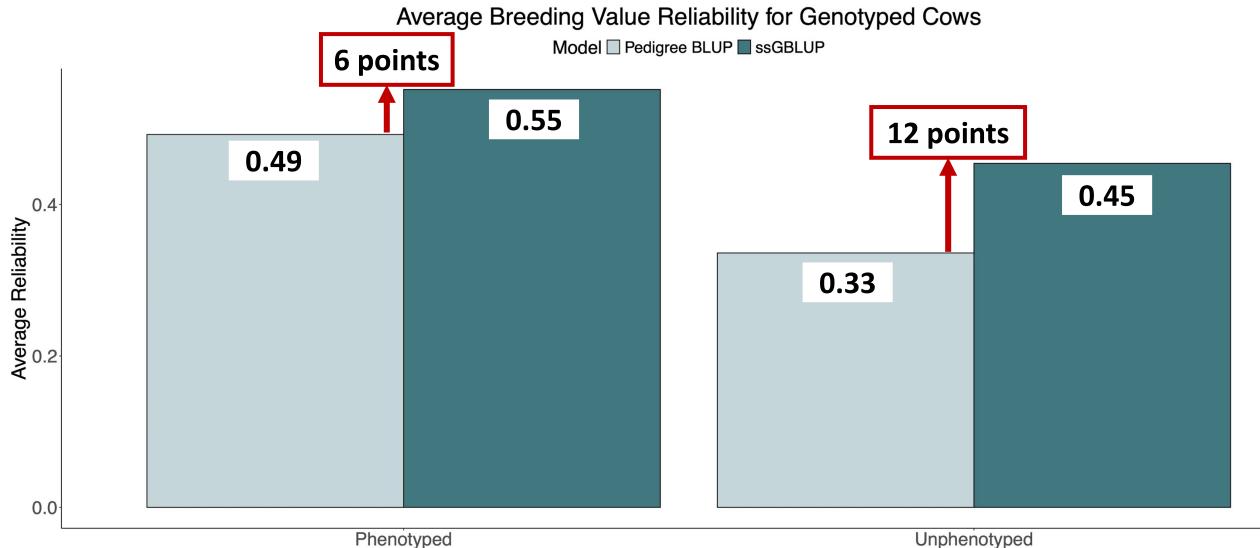
Variance Component Estimation

Parameter	Genetic Estimate	Genomic Estimate
Additive Genetic Variance (σ_a^2)	41.48 ± 4.85	38.94 ± 3.94
Residual Variance (σ_e^2)	65.87 ± 3.76	67.53 ± 2.94
Heritability (h^2)	0.39 ± 0.04	0.37 ± 0.03

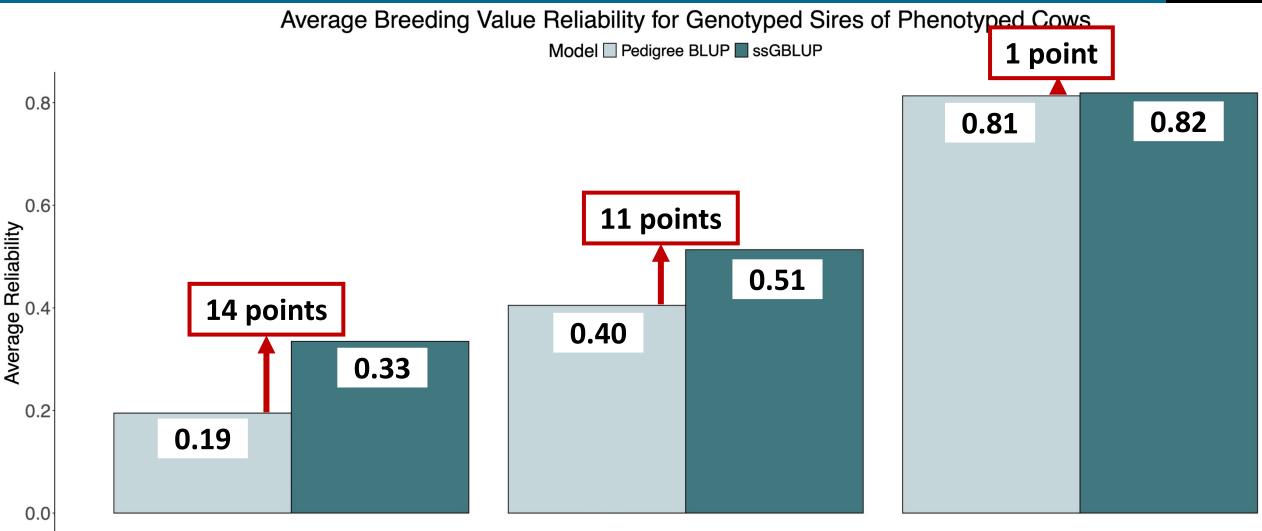

Breeding Value Reliability

Group	Theoretical Reliability (EBVs)
Phenotyped Cows	0.50
Sires with 10+ Daughters	0.70
Sires with 30+ Daughters	0.83

Breeding Value Reliability

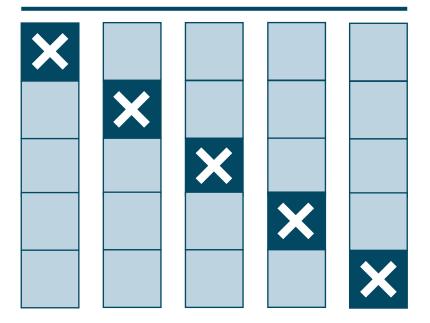


Gain in Reliability with Genomics

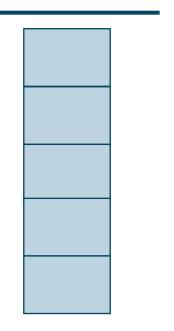


Gain in Reliability with Genomics

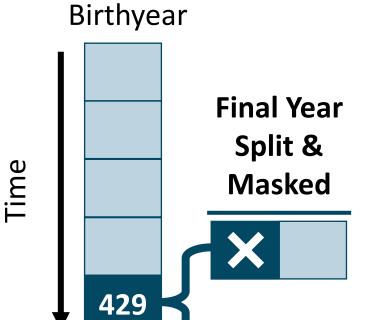
0 Daughters


30+ Daughters

Validation Methods


5-Fold Cross-Validation

Masked



1,513 with genotypes and phenotypes

Full Analysis

Forward Cross-Validation

Validation Results

5-Fold Cross-Validation			
Pedigree BLUP ssGBLUP Gain			
Theoretical Reliability	0.49 ± 0.002	0.51 ± 0.002	0.02
Observed Reliability	0.42 ± 0.005	0.56 ± 0.005	0.14

Forward Cross-Validation				
Pedigree BLUP ssGBLUP Gain				
Theoretical Reliability	0.50 ± 0.002	0.56 ± 0.001	0.06	
Observed Reliability	0.35 ± 0.020	0.61 ± 0.030	0.26	

Breeding Value Correlations

Pearson Correlation coefficients estimated between AGD breeding values and other evaluated trait breeding values

Breeding values for sires with phenotyped daughters

- Provided by Lactanet from the April 2024 evaluation run
- Production and fertility traits

Breeding Value Correlations

Fav	vorable		Sires of Phenotyped Daughters	
4	Fertility Traits		N=912	
	Age at Fir	rst Service	0.19 ± 0.03	
	First Service to Conception (heifers)		0.07 ± 0.03	
	First Service to Conception (cows)		-0.01 ± 0.03	
	56-d Non-Return Rate (heifers)		0.06 ± 0.03	
	56-d Non-Return Rate (cows)		0.01 ± 0.03	
	Calving to	o First Service	-0.06 ± 0.03	

Breeding Value Correlations

Production Traits	Sires of Phenotyped Daughters N=912
305d Milk Yield	0.18 ± 0.03
305d Fat Yield	0.22 ± 0.03
305d Protein Yield	0.23 ± 0.03
U	nfavorable

Compared to Existing Estimates

Heritability	Breed	Country	Parity	Data Size
0.37 ± 0.08	Holstein-Friesian	Ireland ^a	Parities 0-3+	1,180
0.23 ± 0.03	Holstein-Friesian	New Zealand ^b	Heifers	5,010
0.29 ± 0.05	Holstein-Friesian	New Zealand ^b	First parity cows	1,956
0.39 ± 0.04	Holstein	Canada	Parities 0-3+	4,988
$0.37 \pm 0.03^*$	Holstein	Canada	Parities 0-3+	4,988

^{*}Estimated via ssGBLUP

Compared to Alternative Traits

Heritability	Trait	Cows	Heifers
0.06 ± 0.002	Days Open	\checkmark	
0.01 ± 0.001	Non-Return Rate	\checkmark	
0.01 ± 0.001	Non-Return Rate		\checkmark
0.03 ± 0.001	First Service to Conception	\checkmark	
0.01 ± 0.001	First Service to Conception		\checkmark
0.06 ± 0.001	Calving to First Service	\checkmark	
0.39 ± 0.040	Anogenital Distance	√	✓
$0.37 \pm 0.030^*$	Anogenital Distance	√	√

^{*}Estimated via ssGBLUP

Conclusions

- Moderate heritability
- Moderate to high reliability of breeding values
- Large relative gain with genomic information
 - Unproven sires, unphenotyped dams, unphenotyped heifers
- Favorable correlation with age at first service
 - Unfavorable correlation with production traits
- Promising trait for genetic selection
- Next steps → data collection

Acknowledgements

Resilient Dairy Genome Project

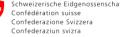
Alberta Agriculture and Forestry

Growing Forward 2: a Federal-Provincial-

Funding:

Alberta Milk

Territorial Initiative



WestGen Endowment Fund

Contact: gdodd@uoguelph.ca