

Combatting psoroptic mange susceptibility in Belgian Blue cattle: can breeding provide a solution?

Roel Meyermans, S. Janssens, W. Gorssen, X. Hubin, W. Veulemans, E. Claerebout, C. Charlier and N. Buys

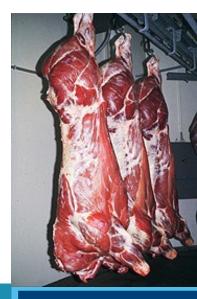
Belgian Blue cattle

Beef cattle breed


50% of Belgian national cattle herd

Worldwide: sires used in crossbreeding

± 2000 breeders



Pictures from: http://www.awenet.be

High ADG (1.2 kg/day during fattening, 1.6kg/day between 7 – 13 months old)

Low feed conversion, lean meat and high carcass yield > 82 %

Psoroptic mange

Skin disease

Caused by mites (Psoroptes ovis)

Consequences:

- Decrease of animal welfare
- Economic losses:
 - Loss in daily gain
 - Leather quality decreases
 - Treatment cost

Psoroptic mange

74% of all beef farms in Flanders are confronted with psoroptic mange (Sarre et al. 2012), but also in Wallonia it is a severe problem

Currently 'controlled' via acaricide drugs, but:

- Often ineffective
- Costly and time consuming
- Resistance of the mites (Sarre et al., 2015; Van Mol et al., 2020))

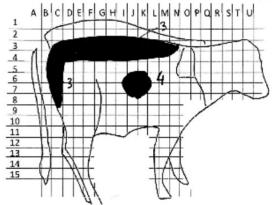
Psoroptic mange sensitivity

Belgian Blue is extremely sensitive to psoroptic mange compared to other breeds

Even within the same environment, some animals are more sensitive than others

Farmers: "Some sire lines produce more sensitive offspring than others"

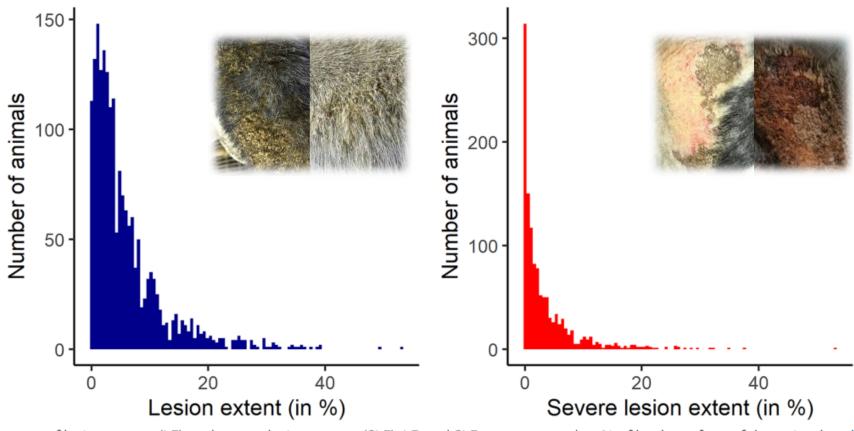
→ Is selection possible ?



Animal sampling

1,975 cattle sampled from 2011-2020 in winter

- Registration of lesion size and severity assesment
- Presence of (live) P. ovis
- Labour intensive!



DNA samples → genotyped on EuroGenomics MD or Illumina BovineSNP50 array

Correlations between successive screenings (2w) were high (±0.74, n=655)

Animal sampling

Histograms of lesion extent (LE) and severe lesion extent (SLE). LE and SLE are expressed as % of body surface of the animal and show a right-skewed distribution of psoroptic lesion extent

Heritability of mange susceptibility

Animal model, using ssGBLUP (remlf90)

Corrected for sex, coat color, birth year, age and project (fixed) and contemporary group (random)

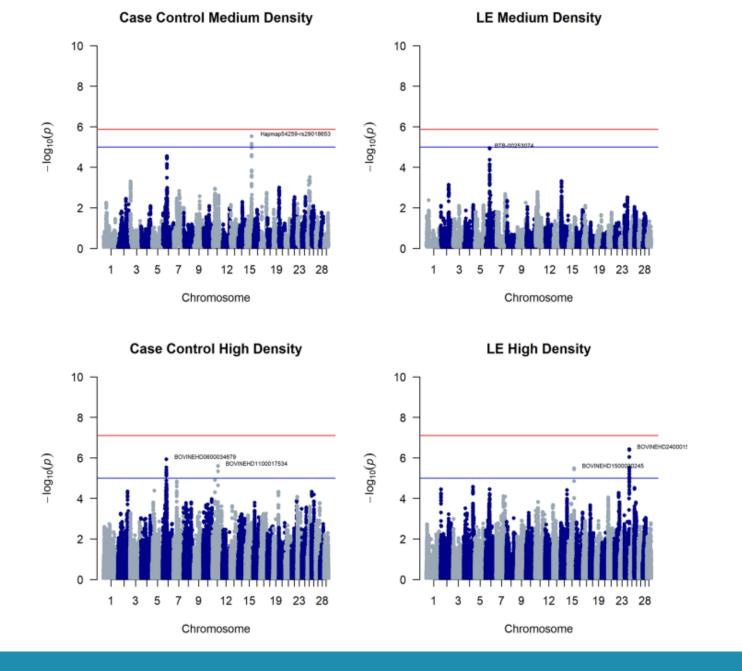
Trait	Additive genetic variance	Contemporary group variance	Residual variance	h²	c_g^2
Lesion extent	3.06 (1.30)	19.06 (3.04)	23.27 (1.45)	0.067 (0.03)	0.420 (0.04)
Severe lesion extent	3.17 (1.00)	17.12 (3.41)	14.40 (1.16)	0.091 (0.03)	0.494 (0.05)
Mite count	516.20 (180.41)	622.50 (130.38)	3042 (190.25)	0.124 (0.04)	0.149 (0.03)

h²: heritability

c_a²: proportion of variance explained by contemporary group effects

SE between brackets

Genomics of mange susceptibility


Quantitative approach for lesion extent (n=1,296)

Genotypes phased and imputed to HD using BEAGLE 3.3.2

Haplotypes were assigned using HiddenPHASE 1.1

GWAS was performed using GLASCOW (linear-mixed model)

Genomics of mange susceptibility

Meyermans et al. Genetics Selection Evolution https://doi.org/10.1186/s12711-024-00921-7

(2024) 56:52

Genetics Selection Evolution

RESEARCH ARTICLE

Open Access

Genetic and genomic analysis of Belgian Blue's susceptibility for psoroptic mange

Roel Meyermans^{1*}, Steven Janssens¹, Annelies Coussé¹, Susanne Tinel¹, Wim Gorssen¹, Fabrice Lepot², Xavier Hubin², Patrick Mayeres², Wim Veulemans³, Nathalie De Wilde⁴, Tom Druet⁵, Michel Georges⁵, Carole Charlier⁵, Edwin Claerebout⁴ and Nadine Buys¹

Can we select against mange susceptiblity?

Heritabilities for mange susceptiblity were low (± 7-9%) with a single observation

→ still possible to select for traits with a low h²

$$\Delta G = \frac{i_{sire} + i_{dam}}{2} \times \sigma_p \times h^2$$

[Smith, 1969; Falconer & Mackay, 1996]

Allows a ΔG of 0.85% lesion coverage in one generation if "full" selection against susceptiblity would be possible ...

With a mean lesion coverage of 3.38% in the screened population → 26% reduction (!)

Can we select against mange susceptiblity?

Current model: ± 2,000 phenotyped animals, total number of animals in pedigree (± 10,000)

Breeding bulls are raised in "high health" environments

→ phenotype offspring

To obtain reliable EBVs (rel > 0.5): > 47 offspring per bull necessary

In our dataset: 19 bulls with > 10 offspring phenotyped & 443 sires in total

Can we select against mange susceptiblity?

Setup routine data collection

Camera / image analysis ?

Rule out non - P. ovis infestations!

Marker assisted selection?

Take home message

- Sensitivity of psoroptic mange susceptiblity is heritable
- Estimation of genetic parameters is possible, selection can be feasible
- Genomic candidate regions have been identified
- But: In the world of genomics, phenotyping is king

Partners

Universities

Herdbooks

Funding

PDMT2/23/035

Thank you for your attention

