

Advances in improving chicken welfare from hatch to slaughter

Mona F. Giersberg

Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands

Overview

In the hatchery

Hatchery processing

On-farm

- Sensor-based activity tracking
- CV tracking

Alternative hatching systems

- Providing light, feed and water
- On-farm hatching

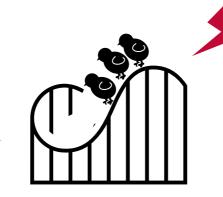
At the slaughterhouse

 Automated assessment of welfare indicators

Best Practices

Bridging science and practice

Hatchery processing



Chicks are exposed to 3 main determinants of the processing line in commercial hatcheries:

- Drop height
- Conveyor belt speed
- Acceleration

Physical stressors

Traumatic injury

Mental stressors

- Discomfort
- Disorientation
- Loss of predictability and controllability

https://www.pasreform.com/en/solutions/5/chick-handling/43/automatic-chick-and-shell-separator

Hatchery processing - experimental procedures

Effects of 3 processing factors were tested separately

- Drop height: 0, 200, 280, 360 mm (14 m/min speed, no acceleration)
- Speed: 0, 14, 20, 27 m/min (200 mm drop height, no acceleration)
- Acceleration: 0, 0.1, 0.2 g (200 mm drop height, 14 m/min speed upper belt)

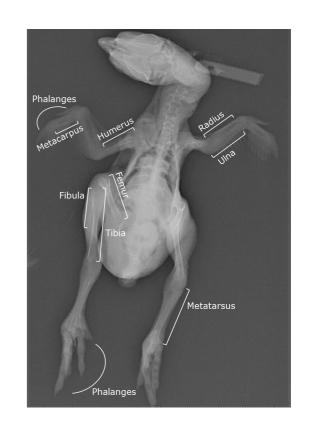
N = 14 day-old Ross 308 chicks/processing factor and increment

Indicators:

- Righting test (before and after the run)
- Orientation and posture (before and after the drop)
- Bruises and injuries
- Postmortem radiographic images

Mental stressors

Physical stressors



Hatchery processing - results

- Righting time <4 s
- Orientation change
 - drop height 200 mm vs. 360 mm, F_{2,39}=7.06, P<0.01
- Posture change
 - drop height 200 mm vs. 280, 360 mm, F_{2,39}=31.99, P<0.01
 - speed 14, 20 m/min vs. 27 m/min, F_{2,39}=11.12, P<0.01
- No bruises or injuries

Hatchery processing - conclusions

- Treatments on the conveyor belt did not seem to affect the chicks' physical health
- With a drop height of 280 mm or at a speed of 27 m/min most chicks did not manage to regain their initial body position on the belt
- Controllability: may be preferred to be able to recover one's posture

Scope for discomfort and (short-term) welfare impairment, if commercial systems are operated with considerably larger drop heights and at higher speeds.

Alternative hatching systems

Three hatching environments

HH: conventional hatchery-hatching

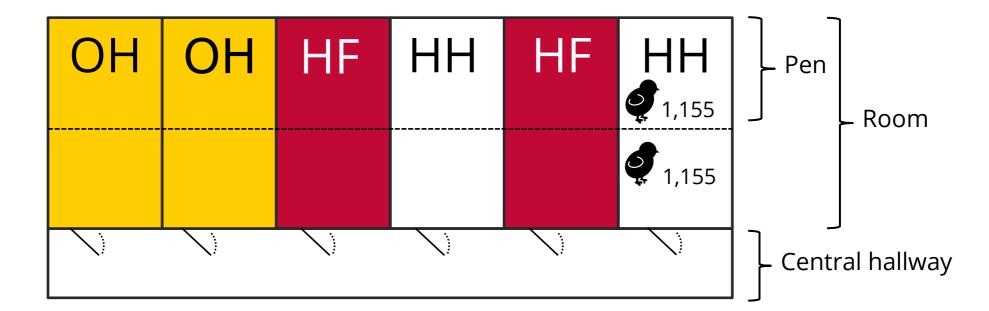
- No light, feed and water in the hatcher
- Transport of day-old chicks

HF: hatchery-feeding, HatchCare (HatchTech, NL)

- Light, feed and water provided in the hatcher
- Transport of day-old chicks

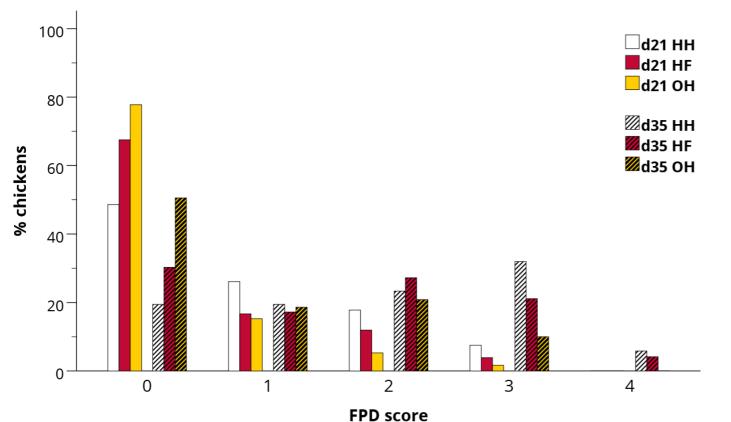
OH: on-farm hatching, X-Treck (Vencomatic, NL)

- Light, feed and water available
- Transport of eggs (ED 18)


Alternative hatching systems - experiments

Experimental Poultry Centre, Geel (BE)

- Three consecutive batches
- Ross 308 chickens; 20.5 chickens/m²
- Environmental indicators, animal-based welfare indicators, behavioural indicators (fear tests)



Alternative hatching systems - results

Utrecht University Hatching system: F_{4.44}=3.05, P<0.05

Age:

F_{4,44}=62.98, P<0.001

OH > HF > HH

Alternative hatching systems - conclusions

- Animal-based welfare indicators and fear tests
 - FPD: OH > HF > HH, d21 < d35
 - Other indicators: OH = HF = HH, $d1/4/21 \neq d21/35$
- System comparison
- FPD: differences in litter moisture? Body weight?
- Other indicators: only age effects
- More subtle effects on mental welfare? Physiological stress indicators?

Interested in the full paper?

On welfare:

Poultry Science

Available online 23 December 2020, 100946 In Press, Corrected Proof (?)

Effects of hatching system on the welfare of broiler chickens in early and later life

Mona F. Giersberg *, † △ ☑, Roos Molenaar *, Ingrid C. de Jong ‡, Carol Souza da Silva ‡, Henry van den Brand *, Bas Kemp *, T. Bas Rodenburg *, †

Show more 🗸

+ Add to Mendeley 📽 Share 🥦 Cite

https://doi.org/10.1016/j.psj.2020.12.043

On performance:

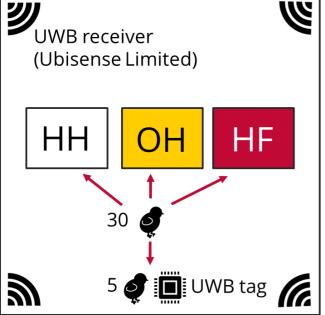
Poultry Science

Available online 23 December 2020, 100953 In Press, Corrected Proof ?

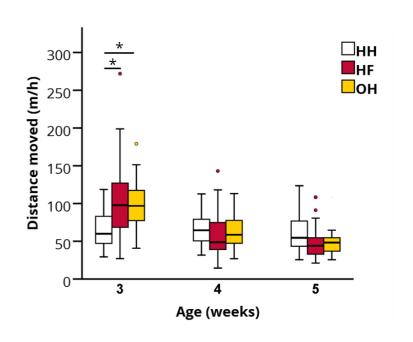
Day-old chicken quality and performance of broiler chickens from 3 different hatching systems

Carol Souza da Silva *, Roos Molenaar †, Mona F. Giersberg †, ‡, T. Bas Rodenburg †, ‡, Johan W. van Riel *, Kris De Baere ¶, Iris Van Dosselaer ¶, Bas Kemp †, Henry van den Brand †, Ingrid C. de Jong * 🌣 🖾

Show more 🗸


+ Add to Mendeley 📽 Share 🥦 Cite

Sensor-based activity tracking


TrackLab software (Noldus)

- ✓ UWB tracking, coordinates of tags attached to the birds, d15-d34
- √ distance moved (m/h)

Computer vision tracking

- Developing a computer vision algorithm for tracking laying hen position and behaviour on the individual level within groups
- Genetic & environmental intervention strategies
- Reduce harmful behaviours
- Promote positive social interactions

AI & Animal Welfare Lab

Improve animals' lives in practice by using the full potential of AI

AI Labs

- Contribute to solving a societal challenge
- Serve as a research and education hub in collaboration with public and private partners

AI & Animal Welfare Lab

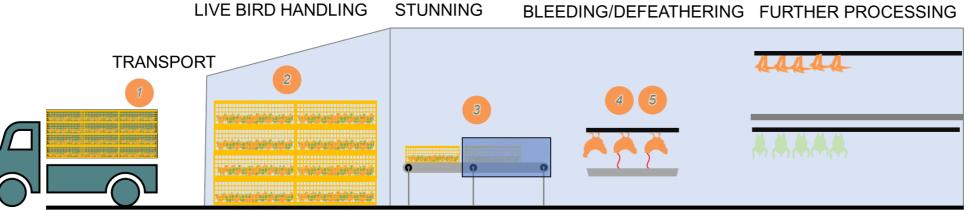
- Reliably measure and monitor welfare indicators over time
- Combining different types of routinely collected data
- Development of early warning systems
- Al methods: landmark localization, computer vision, transfer learning

AI Labs

Automatic welfare monitoring

At the slaugtherhouse

- Assessing and improving animal welfare by automated monitoring and feedback at different stages of the production chain
- Linking data collected on farms to animal welfare indicators automatically measured at the slaughterhouse
- Various technologies at different pilots



Post doc Nienke van Staaveren

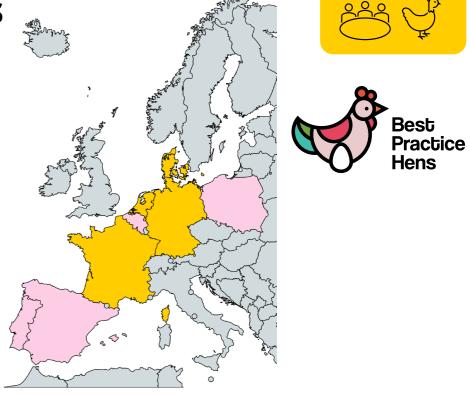
At the slaugtherhouse

Name
ChickenCheck Hockburn
Tech provider
CLK
What does it measure?
Hockburns

Name
ChickenCheck Footpad
Tech provider
CLK
What does it measure?
Footpad lesions

Best Practices – bridging science and practice

 In the EU: furnished cages or cage-free housing systems for laying hens


- Furnished cages: limited space and behavioural opportunities
- Variation in the uptake of cage-free systems among EU countries

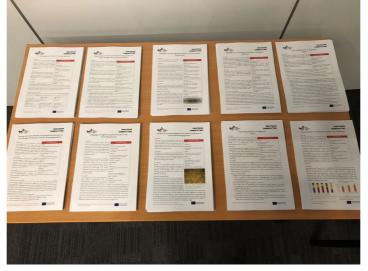
The Best Practice Hens project aims to help egg producers by providing practical guidelines on how to transition to cage-free systems

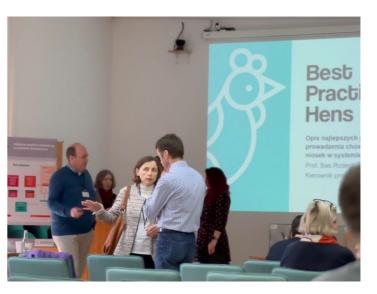
Best Practices – methods and results

- Combining input from experts from
 - 'Cage-free countries' (DK, NL, DE, FR)
 - 'Target countries' (ES, PT, PL, BE)
- Review of the scientific literature, sources of technical information
- Interviews experts from the egg industry and governments (cage-free countries)
- Local situation (target countries)
- Discussion with stakeholders at EU level

Final set of 31 Best Practices for keeping pullets (15) and laying hens (16) in cage-free systems

Best Practices – dissemination





Thank you!

Collaborators

Xavier Averos
Vera Bavinck
Piter Bijma
Henry van den Brand
Ronald Bronneberg
Kris De Baere
Inma Estevez
Peter van Horne
Ingrid de Jong
Bas Kemp
Kenny van Langeveld
Joanna Marchewka
Roos Molenaar
Angela Morell Pérez

Thea van Niekerk
Noemi van Noten
Tzayhri Osorio-Gallardo
Arjen van Putten
Anja Riber
Mariana Ribeiro-Couto
Bas Rodenburg
Nienke van Staaveren
Carol Souza da Silva
Patryk Sztandarski
Frank Tuyttens
Liesbeth Van Damme
Kaitlin Wurtz
& many more

Contact: m.f.giersberg@uu.nl

Mona Franziska Giersberg

Mona F. Giersberg

AI Labs

