

Water Quality: Manganese in drinking water for dairy cattle

Summary

- 1. Contextualization
 - Is it important to talk about water on dairy farms?
 - II. Factors affecting water availability on dairy farms.
 - III. Factors that affect water intake.
- 2. Study Case: Dairy farm in Alentejo
 - Review: Manganese
 - II. Material and Methods
 - III. Preliminary Results
 - IV. Preliminary Conclusions
- 3. Bibliographic Reference

1. Contextualization

Dairy cattle?

Water?

Agriculture?

Quality? Milk production?

Largest waterconsuming sector in the world (FAO and WWC, 2015).

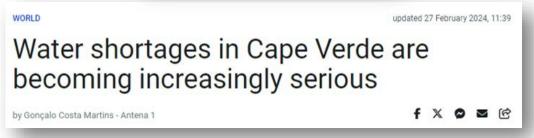
It accounts for 70% of the world's water withdrawals (FAO, 2012).

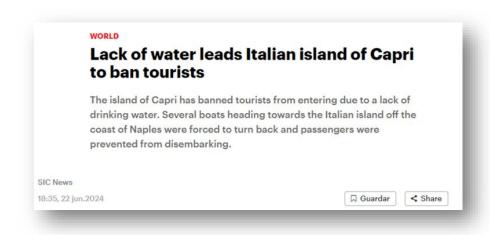
Livestock production accounts for 29% of the water used in agriculture (Mekonnen and Hoekstra, 2012).

Dairy cattle production accounts for 19% of water use (Mekonnen and Hoekstra, 2012)

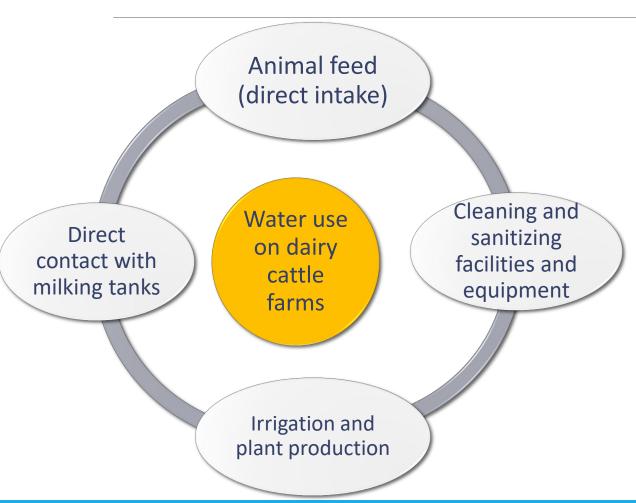
In dairy cattle farms, the use of quality water is essential to maximize milk production and animal health (Boudon, 2018).

Factors that limit the quality and palatability of drinking water reduce well-being, limit growth and production (Schütz et al., 2019).


VÂNIA RESENDE UNIVERSITY OF ÉVORA PHD IN VETERINARY SCIENCES



Every day we see news about water scarcity...



I. Is it important to talk about water on dairy farms?

II. Factors affecting water availability on dairy farms?

Climate Change

- Decrease in precipitation
 - Prolonged droughts

Population Growth

- Increased consumption
- Increased food production

Inefficient Use

- Lack of monitoring
- Excessive consumption

Contamination of Aquifers

- Livestock effluents
 - Industries

III. Factors affecting water intake?

Water intake in dairy cows is mainly influenced by:

- (I) Animal-related
- (II) Environmental factors
 - (III) Feeding practices

(IV) Water quantity and quality

2. Study Case: dairy cattle farm in Alentejo

Boreholes without water...
New boreholes...

Problem:
Presence of Manganese
in water

Objective:

Verify if the presence of manganese in the water affects it:


- Production
- Reproduction
- Animal health

SNR Own image: August 2019

I. Review: Toxicity Manganese?

Factors that limit the quality and palatability of drinking water reduce well-being, limit growth and production (Schütz et al., 2019).

Mn is an extremely dynamic element, its metabolism is "high speed", triggering a chain of events. The absorption, tissue renewal and reexcretion (diarrhea) of Mn proceeds at a rapid pace. Mn is essential for the functioning of various enzyme systems.

[..] manganese concentrations exceeding 0.05 mg/L are sufficient to cause unpleasant tastes in water that may cause <u>reduced water intake and milk</u> production." Jim Linn and Mary Raeth-Knight Department of Animal Science, University of Minnesota

Iron and manganese are very common pollutants that can occur naturally in groundwater. Both cause severe staining and a metallic taste to the water, <u>resulting in reduced water intake and milk production</u> (Swistock, 2016).

Climate in Alentejo

The climate of mainland Portugal, according to the Koppen classification, is divided by:

- temperate climate with a rainy winter and a dry, hot summer (Csa)
- temperate climate with a rainy winter and a dry, slightly hot summer (Csb).

Location of farms with high levels of manganese in the water

Last few Years
Temperature Rises
Prolonged Droughts
Less available water

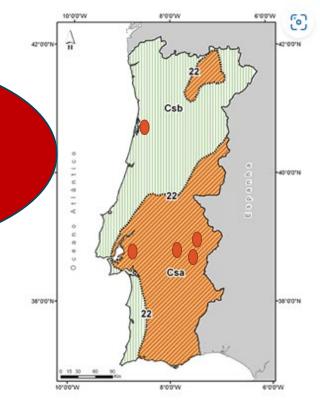


Fig 1: Climate of mainland Portugal, according to the Koppen classification

Instituto Português do Mar e da Atmosfera (ipma.pt).



2018

- > Production diseases
- > Feeding/ Water quality
 - Animal welfare
- Milk quality and quantity

2012

2013

2015

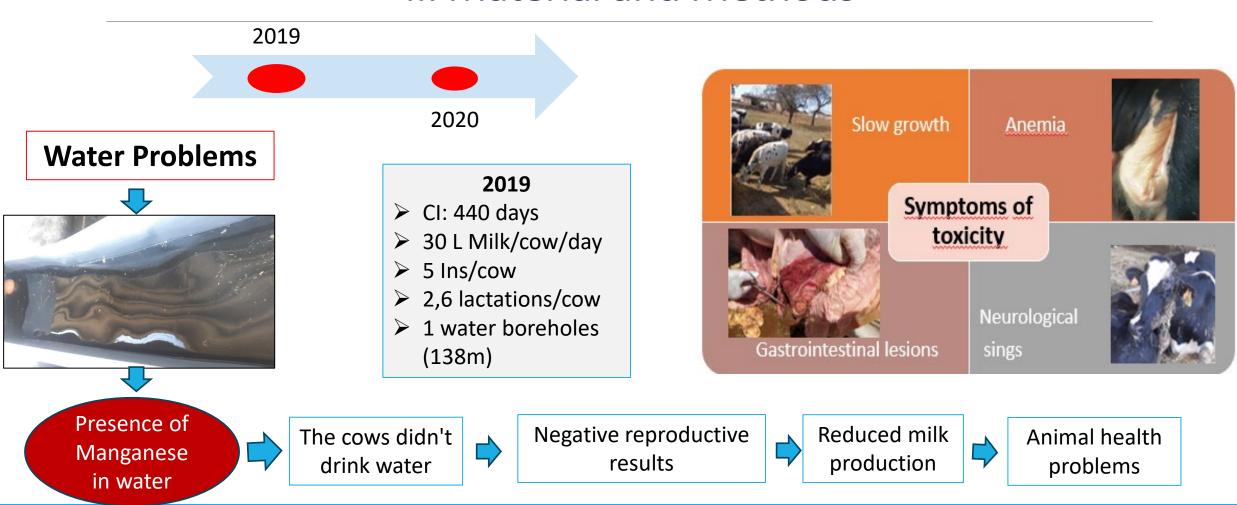
2017

2019

- CI: 480 days
- 22L Milk/cow/day
- > 70 lactating cows
- breeding bull
- 2,1 lactations/cow
- 2 water boreholes (depth 21m e 138 m)

2014

2016



2018

- > CI: 395 days
- ➤ 34 L Milk/cow/day
- 210 lactating cows
- > 2,2 Ins/cow
- > 3,4 lactations/cow
- 2 water boreholes (21m e 138 m)

Water information:

- Quantity water intake
- Quality physicochemical and microbiological parameters
- Water treatment systems
- Manganese concentration in the borehole

Farm Information:

- Quantity and quality Feeding
- Reprodutive results (last years)
- Milk prodution and quality
- Mortality rate
- Livestock scrap rate
- Animal health

- "Evorlamp" company
- UEvora's water laboratory
- "Microáguas" laboratory
- Water meter

TEAM WORK

- Veterinary
- Animal nutrition manager
- > Exploited workers
- Delpro and Bovinet (software)
- SNIRA: national animal identification and registration system
- Veterinary registrations
- Dairy contrast

Water Treatment System

Experimental groups balanced for:

- Age
- Number of births
- Butyric content of milk
- Milk protein content

All experimental groups are in the same conditions:

- Farm / Stable
- Feeding
- Ambient temperature and humidity
- Same number of drinking fountains

- Same manger space
- Same time of food distribution

Variation factor: Manganese (Mn) concentration

- Treated group <50 µg/L (DGAV, 2014)
- Untreated group >1000* μg/L

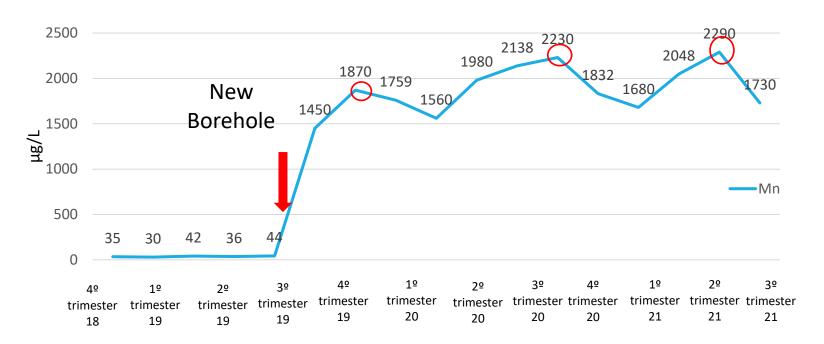
Collection of blood, urine and milk samples during 2 months.

Urine

Milk

- **Serum** samples were tested for Urea, Creatinine, Aspartat
- **Urine** samples were tested for Urea, Creatinine, and Mn.

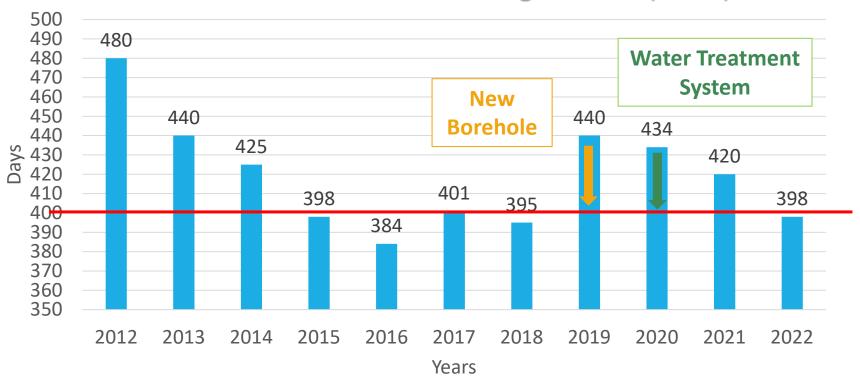
UNIVERSITY OF ÉVORA **VÂNIA RESENDE** PHD IN VETERINARY SCIENCES 14


^{*}Cows tolerate

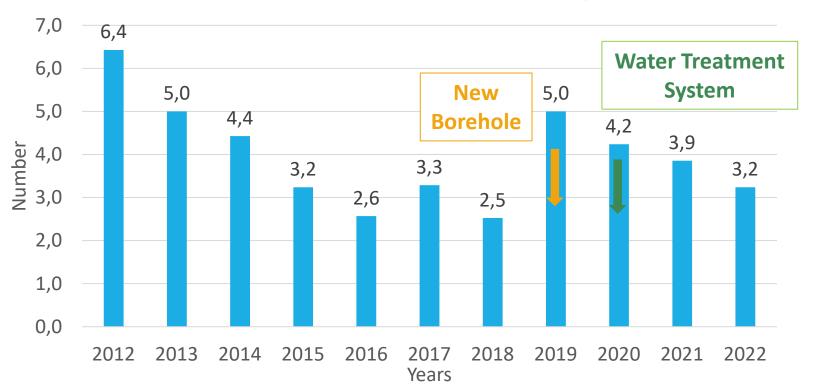
G1: Manganese concentration in the borehole

With the use of the new borehole, the values are higher than the recommendation value (50µg/L).

The values are higher during the winter months. This value is related to precipitation.


Mn in water can also reflect soil erosion (EAP, 2004).

Fonte: Microáguas, Agroleico, laboratório águas UE


The objective is to reduce the calving interval as much as possible. This value was achieved in 2016 and 2018. The use of the new borehole seems to have contributed to an increase in the calving interval.

2020					
Untreated	Treated				
group	group				
478 days	411 days				

G 3: Number of inseminations per cow (Farm)

It is possible to see an increase in the number of inseminations in 2019 and 2020.

When we compare the experimental groups, we see an increase of 2.4 inseminations per cow.

2020					
Untreated	Treated				
group	group				
5,2	2,8				

G 4: Milk production per cow

There is a reduction in milk production with the change of borehole.

The difference is 4
liters/cow/day in 2019 and 5
liters in 2020, when compared
to the previous year.
Milk production begins to
recover in 2021.

Table 1. Age, lactation number and production parameters of dairy cows in the year prior to the trial and in the year of the trial (n=15 per group)

	Group drinking		Group drinking treated		
	untreated water		water		Value de p
	Mean	EP	Mean	EP	
Cow age(d)	1501	78	1502	84	0,995
Lactation Number	1,96	0,19	1,96	0,19	1,000
Total Milk Production (kg)	8216,4	399,7	9350,8	383,4	0,046*
Milk production per day (kg)	26,9	1,3	30,7	1,3	0,046*
FAT (%)	3,85	0,08	3,92	0,08	0,568
Protein (%)	3,47	0,05	3,52	0,04	0,441

When we compare the experimental groups, we see that the difference in production is statistically significant for milk production.

^{*} p<0,05

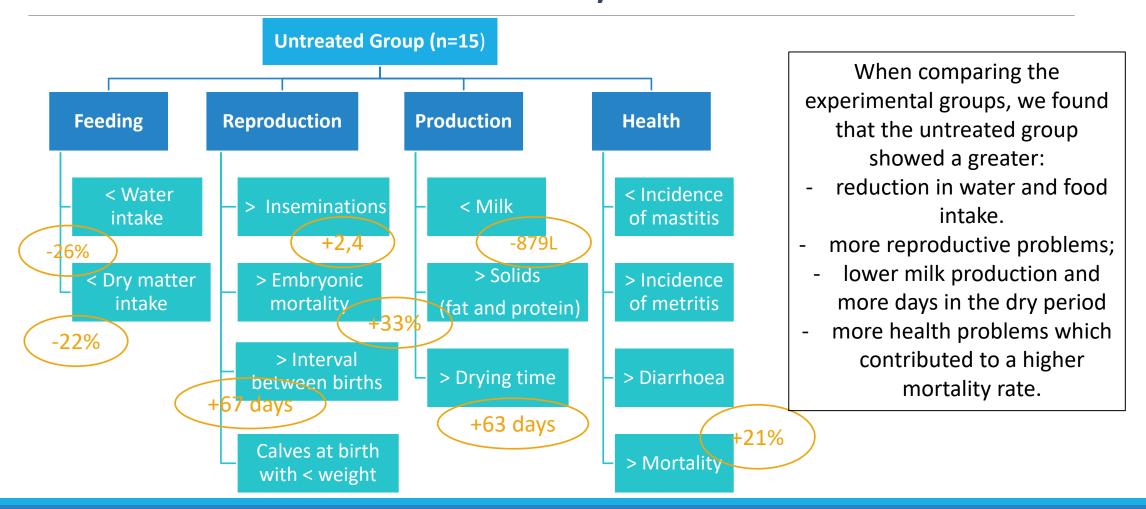


Table 2: Biochemical Analysis and Toxicology

	Reference values*	Control Group	Untreated Group	Observations
		IU/L		
ALT		6.9-35.3	31.5-36.2	
AST	60-125	45.3-110.2	201.1-269.1	High values are found in cases of necrosis muscle and/or hepatic necrosis
GGT	6-17.4	4.9-25.7	32.9-135.7	High values related to liver disease of toxic origin

^{*} Normal value, Merck Veterinary Manual, 2011

ATS and GGT values are higher than normal, which means that we may be in a situation of manganese toxicity.

Work in progress?

The other analyses (serum, urine and milk) are underway, followed by the statistical analysis...

DNA Tech laboratory

> INIAV laboratory

V. Conclusions

In the case of study, the excess of manganese it seems affected:

- ➤ The production (.< Milk).
- ➤ The reproduction (> Inseminations and > Interval between births),
- The health of animals (> Incidence of metritis and gastrointestinal lesions).
- > But more data needs to be analyzed...

This work is funded by National Funds through FCT - Foundation for Science and Technology under the Project UIDB/05183/2020

Thank you for your attention!

2. Bibliographic References

- >Aschner, M., Erikson, K. M., Dorman, D. C. (2005). Manganese Dosimetry: Species Differences and Implications for Neurotoxicity. Critical Reviews in Toxicology, 35: 1 32.
- >Aschner, M. and Erikson, K. (2017). Manganese. Advances in Nutrition: An International Review Journal, 8(3): 520 521.
- >Aschner, M., Guilarte, T.R., Schneider, J.S., et al. (2007). Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol, 221: 131 –147.
- ▶ Beede, D.K., 2012. What will our ruminants drink? *Animal Frontiers*, **2**:36–43.
- DGAV (2014). Guia de Boas Práticas Água de Qualidade Adequada na Alimentação Animal.Rev-2.FEV 2014; 14/03/2014.
- Domingues, P., Langoni, H., Padovani, C., Gonzales, J., Fregonesi, O. (2001). Determinação de gordura, proteína, cobre, ferro, manganês, zinco e contagem de células somáticas no leite de vacas com mastite subclínica. Seminário: Ciências Agrárias, Londrina, 2(22): 169-174.
- EPA (U.S. Environmental Protection Agency), Office of Water Quality. (2004). Drinking Water Health Advisory for Manganese. Available at http://www.epa.gov/safewater/. Accessed June 21.
- >Ho, S. Y., W. J. Miller, R. P. Gentry, N. W. Neathery, Blackmon M., (1984). Effects of high but nontoxic dietary manganese and iron on their metabolism in calves. J. Dairy Sci. 67:1489–1495.
- >Jenkins, K. J., Hidiroglou, M., (1991). Tolerance of the preruminant calf for excess manganese or zinc in milk replacer. J. Dairy Sci. 74:1047–1053.
- NRC, (2005). Mineral Tolerance of Animals: Committee on Minerals and Toxic Substances in Diets and Water for Animals Second Revised Edition. National Research Council. National Academy Press, Washington, D.C.
- NRC NATIONAL RESEARCH COUNCIL. Nutrient requirement of, small ruminanats: 1 ed. (2017) Ciência Animal 27(1) Washington: National Academy Press. 2006. 362p.
- Santos, J.E.P. (1999). Efeitos da nutrição na reprodução. Revisão. Veterinary Medicine Teaching and Research Center, School of Veterinary Medicie, UC-Davis. Schütz, E., Frances, J., Huddart, R. (2019). Manure contamination of drinking water influences dairy cattle water intake and preference. Animal Behaviour Science 217 (2019) 16–20
- >Silva, N., Martins, T., Borges, I. (2017). Effect of microminerals on feeding of ruminants. Animal Cience 27(1): 75-98Smith, O.B. e Akinamilo, O.O. (2000). Micronutrients and reproduction in farm animals. Animal Reproduction Science, 60(61): 549-560.
- >teiger Burgos, M., Senn, M., Sutter, F. et al., 2001. Effect of water restriction on feeding and metabolism in dairy cows. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 280:R418–R427.