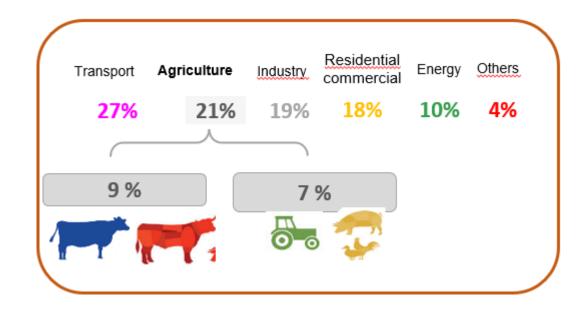


Testing feeding levers to decrease the carbon footprint of dairy farms.

Brocard Valérie¹, Lambert Pauline¹, Tranvoiz Elodie²

(1) Institut de l'Elevage, France

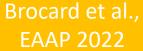
(2) Chambre d'Agriculture de Région Bretagne, France



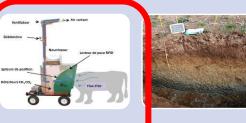
Livestock farming at the heart of major environmental issues

- In France, Cattle farms contribute to 9% of GHG emissions
- National target: -20% reduction in the carbon footprint of milk by 2025
- In research farms: implementation of low C footprint systems
- Further: Test of extra levers to decrease the C footprint

Source: CITEPA,

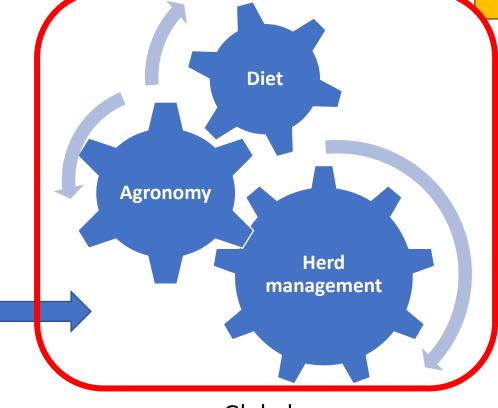

2021

EAAP2024 - Florence, Italy



In experimental farms: test, measure, apply,

innovate!



Tests on rations or feed supplements on enteric CH4 emissions

Soil observatory and effects of rotations on fertility, organic matter

Rearing young stock on grass and monitoring growth performance

Analytic test of levers

Global technical/economic/environmental analysis of farming systems

Reduction of production costs with no negative impact on other environmental factors and no production loss

EAAP2024 - Florence, Italy

Implementing a global Low Carbon Footprint in an experimental farm

- Aim = 8,000 kg produced per cow per yr
- 0.25 ha grazed grass per cow (regional average)

Potential levers to decrease C footprint and their relative impacts CAP'ZER

- Herd management: 10-15%
 - Replacement, heifers, herd health
- Feeding: 2-4%
 - Forage quality, concentrates, protein self sufficiency, grazing
- Crops management: 3-4%
 - Yield, fertilisation
- Energy consumption: 1-2%
 - Fuel, electricity
- Carbon storage: 2-8%
 - Type of grasslands, livespan of the temporary grasslands, renewing/reseeding grasslands, new hedges, agroforestry

ESTIMATED IMPACTS OF SOME TECHNICAL LEVERS ON THE CARBON FOOTPRINT

Production concentrate

Without

Protein concentrate

Rapeseed

-6%

Stage of harvest for grass silage

Early harvest

-1%

Age at 1st calving

24 months

Calving period

65% Autumn 35% Spring

-2%

Economy, environment, workload?

Going further with feeding levers? 4 experiments

Feeding additive

Grazing legume-rich leys in summer

Ear-corn silage

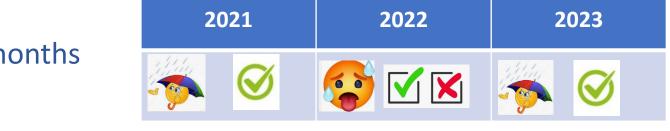
Fodder beets

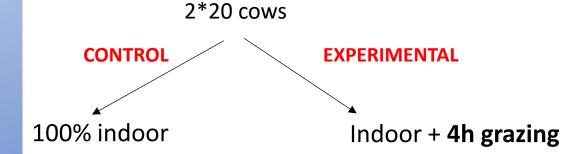
95 g PDI/UFL (16%CP)

Winter Control
Diet

N conc

4-5 kg DM grass silage


Ad lib maize silage



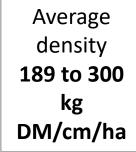
TAN EUROPA 2007 PLO RENCE TO BE STORY OF THE PROPERTY OF THE P

Grazing legume-rich leys in summer

- 3 contrasted summers:
- Analytic experiment: 3 months

cow ⁻¹ d ⁻¹	Control	Experimental
Maize silage (kg DM)	16	11
Grass silage (kg DM)	4	4
Grazing (kg DM)	0	Target: 5
Rapeseed cakes 35%CP (kg)	4.2	2.9

Replacing concentrate by legume grazing



Grazing legume-rich leys in summer

to reduce N concentrate

40 to 66% legumes 17 to 22% CP

Average growth 50 kg DM/ha/d

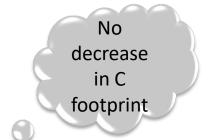
Carbon
Footprint:
0 to -0.03 g
CO₂/I milk eq

-2 to 0 kg milk difference 2021-23

Margin over feeding cost +0,42 €/cow/d (max)

No effect on milk solids

A self sufficient diet based on grass silage and ear corn silage:

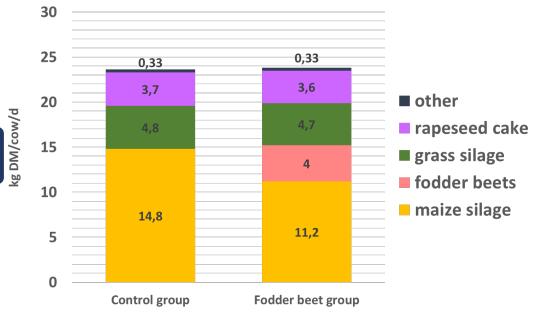


Diets	Control	ABCD
Maize silage	Ad lib	/
Grass silage (13% CP)	4 kg DM	Ad lib
Ear corn silage	/	5 kg DM
Rapeseed cakes	260 g / kg DM maize	1 kg (Greenfeed)

 With a diet based on ad libitum grass silage and 5 kg DM ear corn silage :

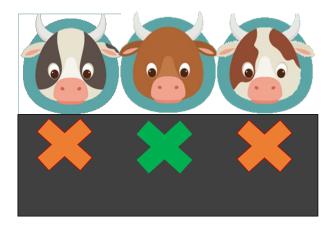
More self sufficiency

-4.2 kg DM intake /cow/d
-7.0 kg milk/cow/d
- 1.5 g/kg Protein content
-1.8 € margin over feeding cost/cow/d



Fodder beets added to maize silage diets: no miracle

 Addition of 4 kg DM fodder beets on a maize silage diet: tested during 2 winters


Feeding additives to reduce the enteric methan?

g/d

-0.8 g/kg g/kg milk

DMI

A slight decrease in CH4 emissions per kg corrected milk

-2% at year level

Benchmarking feeding levers tested:

Feeding additive

Grazing legume-rich leys in summer

Ear-corn silage

Fodder beets

Conclusions

- Possible to decrease C footprint on most of dairy farms with simple levers
 - In parallel, reduce dependency on N inputs
 - In Trevarez: 0.86 NCF in 2018, 0.71 in 2022 (g CO₂ per I milk eq.)
- Extra levers: Impact remains limited
 - combine families of levers with consistency
- Usually positive neutral or positive effect on farm profit
 - Workload?
 - Cost of additives? Acceptability by farmers and consumers?

Conclusions

- A ruminant is ruminating, in particular in low input systems based on forage production (= profitability)
 - Biologic emissions represent 85% of our emissions (CH₄ rumination, N₂0 manure management)
 - Compensate C input emissions only? We currently store 100% of the C inputs (fertilisers, rapeseed) under grasslands + root of hedges
 - Change calculation methods (GWP*)?

Grazie mille !!!

valerie.brocard@idele.fr

pauline.lambert@idele.fr

elodie.tranvoiz@bretagne.chambagri.fr

