

The effect of dairy farming system on GHG emission estimations in Latvia pilot farms

<u>D. Ruska</u> ¹, L. Berzina ², L. Paura ², E. Aplociņa ¹, L. Cielava ¹

LBTU ¹Faculty of Agriculture and Food Technology, Institute of Animal Sciences, ²Faculty of Information Technologies, Liela str. 2, Jelgava, LV 3001, Latvia

How to deal with EU-Green Deal Session 88, 04.09.2024, Florence

Climate and policy

- Many GHGs, including water vapor (the most important), ozone, carbon dioxide, methane, and nitrous oxide, are naturally present in the atmosphere.
- Other GHGs are synthetic chemicals that are emitted only as a result of human activity. Anthropogenic (human) activities are significantly increasing atmospheric concentrations of many GHGs.

https://www.labxchange.org/library/pathway/lx-pathway:793d74a7-f393-4fe1-9943-4662d8a0d651/items/lx-pb:793d74a7-f393-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-4fe1-9940-

The first climateneutral continent

by 2050

At least 55% less

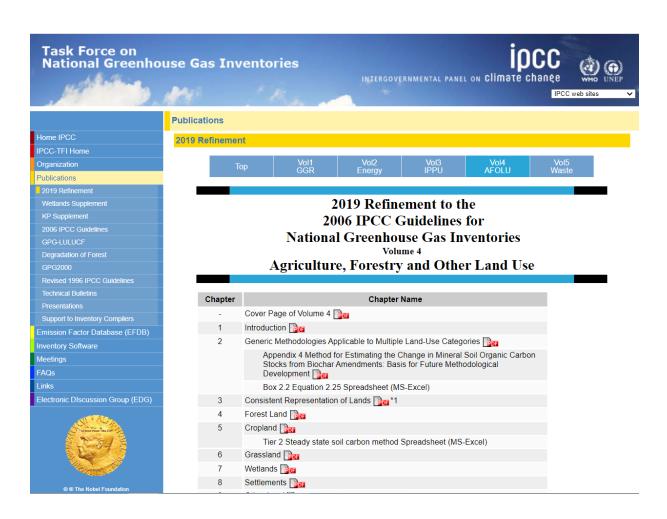
net greenhouse gas emissions by 2030, compared to 1990 levels

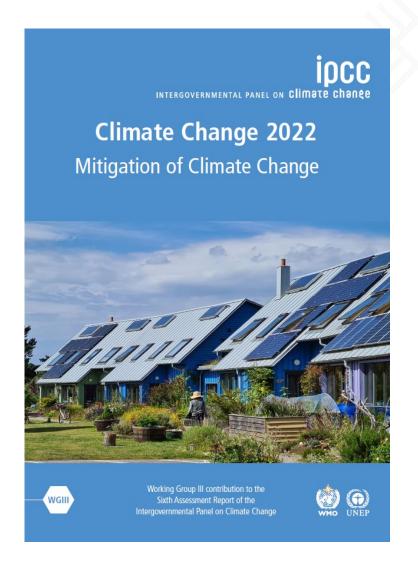
3 billion

additional trees to be planted in the EU by 2030

GHG mitigation measures for livestock

https://www.intelligentliving.co/gene-editing-cows-cutemissions/

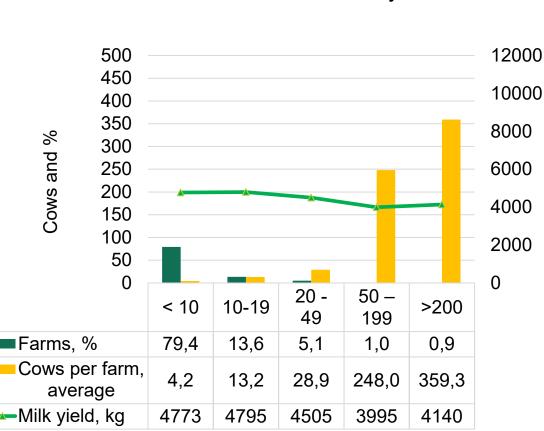



https://dairyexporter.co.nz/3-nop-the-magic-methane-inhibitor/

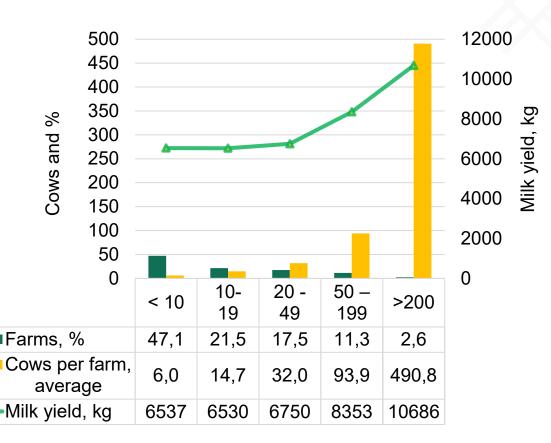
Intergovernmental Panel on Climate Change (IPCC)

Purpose of the study

Collect reference data based on actual farm characteristics from different Livestock farming systems



Structure of dairy farms, by average cows number in farm (years 2000 and 2023, under milk recording)


yield,

Year 2000, 4% of total dairy cows

Year 2023, 98% of total dairy cows

Source: Agricultural Data centre Republic of Latvia, 2024

Data set of Reference farms

Dairy farms

- ◆Conventional farm(A) 600 dairy cows
- ◆Organic farm (B) –43 dairy cows
- ◆Organic farm (C) –4 dairy cows

Housing technology

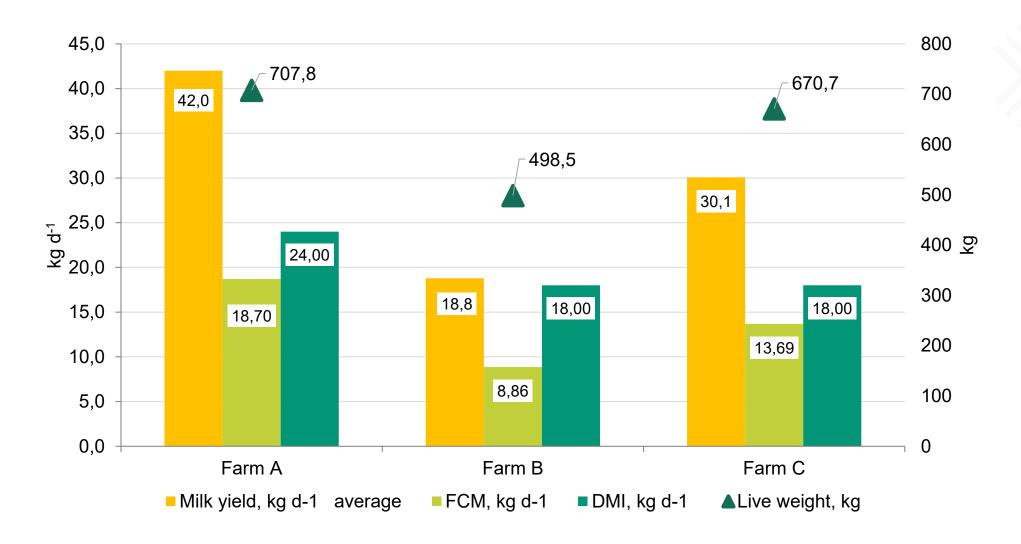
- **◆**Cubicle housing
- ◆Tie stall, grazing

Manure management

- ◆ Slurry, Biogas
- Storage on concrete area
- Accumulation on living area

Feeding technology

- ◆Total mixed ration (TMR)
- ◆Portion ration
- ◆Dry matter intake


Productivity

- ◆Animal weight gain
- ◆Milk productivity traits

Overview of Reference farms

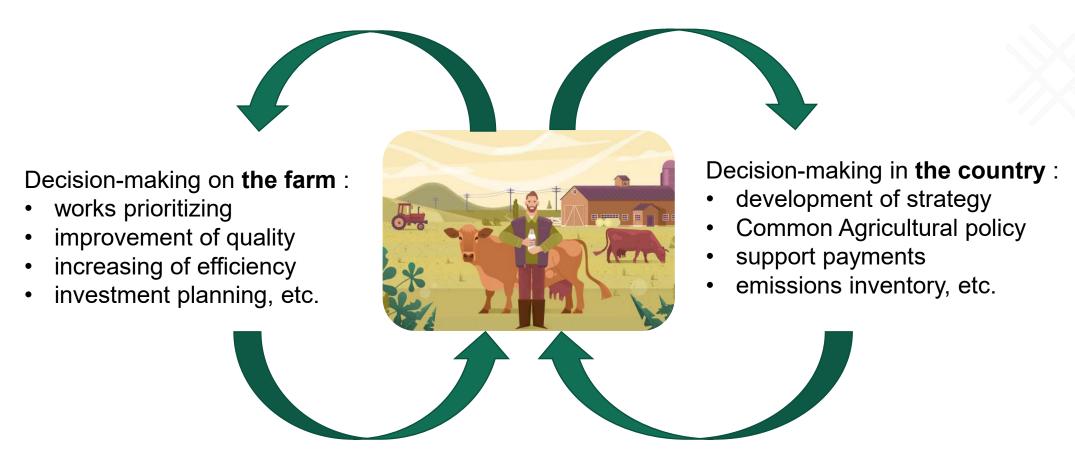
Methods used for calculation of GHG emissions

Traits	Livestock data	Manure management system	Milk yield, kg d- ¹	Animal weight, kg	Feed digestibility, %	Feed database used	Tier level
Latvia GHG Inventory, 2024	Central Statistical Bureau	University of Life Sciences and Technologies calculations: Pastures 5% Solid manure 35% Slurry 43% Digesters 17%	24.6	570	67	Calculations for observed productivity	Enteric fermentation: Tier 2 Manure management Tier 2
Farm A	Actual farm data	Digesters	39.1	708	74	Farm based data	Enteric fermentation: Tier 2 Manure management Tier 2
Farm B	Actual farm data	Solid manure pastures	18.8	498	63	Farm based data	Enteric fermentation: Tier 2 Manure management Tier 2
Farm C	Actual farm data	Solid manure pastures	30.1	670	63	Farm based data	Enteric fermentation: Tier 2 Manure management Tier 2

CO₂ eq. per dairy cow, kg

Calculation	Guidelines		Farm A	Farm B	Farm C	LV Inventory
methodology		Methodology	Emissions, kg, C0 ₂ eq. (Gross energy intake, MJ)			
Latvia Inventory Version 1	IPCC 2006, actual version of inventory, Tier 2	IPCC 2006 GE based on net energy for necessary requirements	5822 (464)	4691 (367)	6090 (478)	5039
Version 2	IPCC 2006, farm based feed data GE calculations, Tier 2	IPCC 2006 GE calculated based on farm feeding characteristics	5569 (444)	4220 (320)	3940 (311)	-
Version 3	IPCC 2019, Tier 2	IPCC 2019, Simplified Tier 2 for enteric methane emission (DMI, DE, NDF)	5162	3685	5466	-

Insights for further work



- ◆ Major changes in GHG emissions calculations within latest years include update to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- Moving to highest Tier calculation methodology and using high accuracy national data the National Inventory can be a reliable base for decision-making, in particular to develop GHG emissions reduction strategies.
- ◆ Methodological frameworks for GHG reporting can resulted in only minor changes in agricultural GHG emissions in the National Inventory, most important differences for calculation outcome may be observed when specific feeding data are used.
- Methane emissions from enteric fermentation are significantly influenced by digestibility data of feed, however emissions from manure management can be significantly reduced by switching from slurry based manure management system to digesters that especially important for intensive dairy farms to reduce amount of emissions.

Importance of data quality

DATA QUALITY = DECISIONS QUALITY

THANK YOU FOR YOUR ATTENTION!

Acknowledgement:

This study was supported by Latvia Ministry of Agriculture project «Assessment and accounting of greenhouse gas (GHG) and ammonia emissions produced by agricultural animals under conventional and organic farming conditions»

