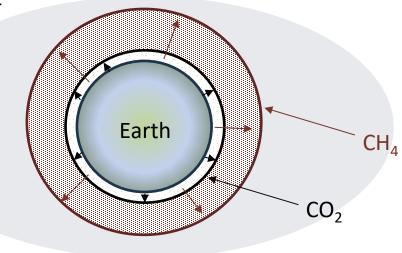


Assessing 'CO₂-warming-equivalent' emissions from Slovenian cattle production using GWP*

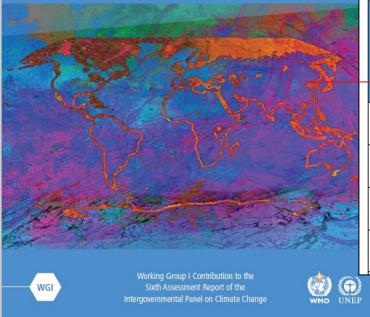
EAAP - Session 88 - "How the dairy sector copes with EU-Green deal"

Žan Pečnik (presenting author), **Jože Verbič** Agricultural Institute of Slovenia

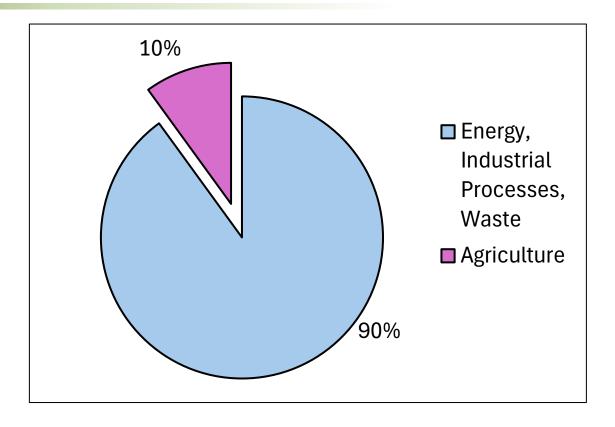
Florence, 4 September 2024


IntroductionClimate pollution

- Livestock farming, especially cattle farming, has been criticised for decades as a climate polluter
- Emissions of methane (CH₄) and nitrous oxide (N₂O)


GHG emissions: global warming potential

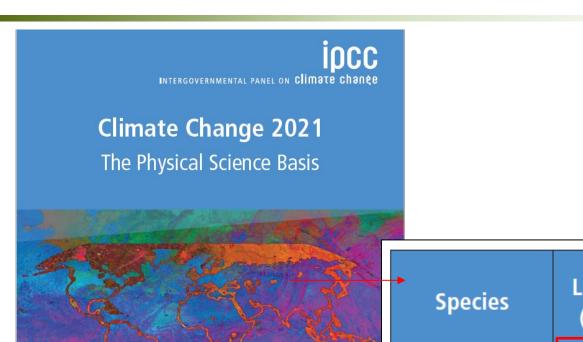
The same amount of gases:

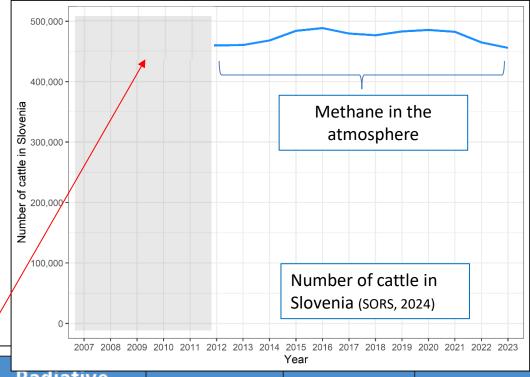


Climate Change 2021
The Physical Science Basis

Species	Lifetime (Years)	Radiative Efficiency (W m ⁻² ppb ⁻¹)	GWP-20	GWP-100	GWP-500
CO ₂	Multiple	1.33 ± 0.16 ×10 ⁻⁵	1.	1.000	1.000
CH ₄ -fossil	11.8 ± 1.8	5.7 ± 1.4 ×10 ⁻⁴	82.5 ± 25.8	29.8 ± 11	10.0 ± 3.8
CH4-non fossil	11.8 ± 1.8	5.7 ± 1.4 ×10 ⁻⁴	79.7 ± 25.8	27.0 ± 11	7.2 ± 3.8
N ₂ O	109 ± 10	2.8 ± 1.1 ×10 ⁻³	273 ± 118	273 ± 130	130 ± 64

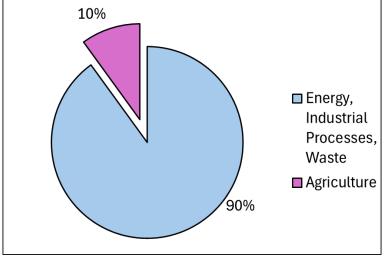
How we usually report the structure of GHG emissions: CO₂ equivalents


"For 10% of warming is responsible agriculture".


Inaccurate or unclear conclusions.

GHG emissions: lifetime

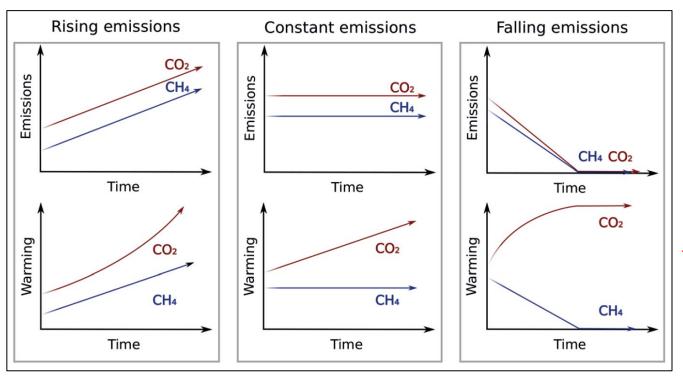
Species	Lifetim <i>e</i> (Years)	Radiative Efficiency (W m ⁻² ppb ⁻¹)	GWP-20	GWP-100	GWP-500
CO ₂	Multiple	1.33 ± 0.16 ×10 ⁻⁵	1.	1.000	1.000
CH ₄ -fossil	11.8 ± 1.8	5.7 ± 1.4 ×10 ⁻⁴	82.5 ± 25.8	29.8 ± 11	10.0 ± 3.8
CH4-non fossil	11.8 ± 1.8	5.7 ± 1.4 ×10 ⁻⁴	79.7 ± 25.8	27.0 ± 11	7.2 ± 3.8
N₂O	109 ± 10	2.8 ± 1.1 ×10 ⁻³	273 ± 118	273 ± 130	130 ± 64


Working Group I Contribution to the

The Paris Agreement

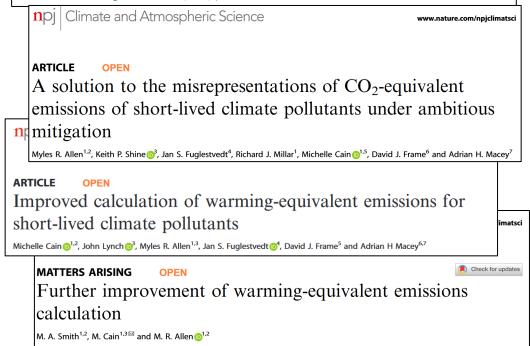
"Article 2

- 1. This Agreement, in enhancing the implementation of the Convention, including its objective, aims to strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate poverty, including by:
- (a) Holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above preindustrial levels, recognizing that this would significantly reduce the risks and impacts of climate change;"



How temperature responds differently to cumulative and short-lived climate pollutants

(Allen et al., 2017)



New use of global warming potentials to compare cumulative and short-lived climate pollutants

Myles R. Allen [™], Jan S. Fuglestvedt, <u>Keith P. Shine</u>, <u>Andy Reisinger</u>, <u>Raymond T. Pierrehumbert</u> & <u>Piers M.</u>
<u>Forster</u>

Nature Climate Change 6, 773–776 (2016) Cite this article

- CO₂ (=LLCP) accumulates
 CH₄ (=SLCP) is broken down
- Declining CH₄ emissions for 3% per decade= net zero warming-equivalent emissions

GWP* usage in animal science

some examples

Journal of Dairy Research

The role of the European small ruminant dairy sector in stabilising global temperatures:

lessons from GWP* warming-equivalent

emission metrics

Research Article

cambridge.org/dar

Agustin del Prado¹, Pablo Manzano^{1,2,3} and Guillermo Pardo¹

J. Dairy Sci. 105:8558-8568 https://doi.org/10.3168/jds.2021-21413

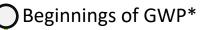
© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Symposium review: Defining a pathway to climate neutrality for US dairy cattle production*

S. E. Place, 1 C. J. McCabe, 2 and F. M. Mitloehner 2 to 0

Contents lists available at ScienceDirect

Animal


The international journal of animal biosciences

Animal board invited review: Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change

A. del Prado a,b,*, J. Lynch C, S. Liu B, Ridoutt e,f, G. Pardo A, F Mitloehner

2021

2024

2022

2023

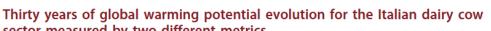
Short communication: climate impact of Australian livestock production assessed using the GWP* climate metric

Bradley Ridoutt a,b

Liu et al. CABI Agric Biosci (2021) 2:22 https://doi.org/10.1186/s43170-021-00041-y

Open Access

RESEARCH


Rethinking methane from animal agriculture

Shule Liu, Joe Proudman and Frank M. Mitloehner*

sector measured by two different metrics

ITALIAN JOURNAL OF ANIMAL SCIENCE 2024, VOL. 23, NO. 1, 1002-1017

RESEARCH ARTICLE

∂ OPEN ACCESS

Check for updates

Marco Berton (i), Giovanni Bittante (ii), Enrico Sturaro (ii) and Luigi Gallo (iii)

Contents lists available at ScienceDirect

Livestock Science

journal homepage: www.elsevier.com/locate/livsc

Taylor & Francis
Taylor & Francis Group

Choice of metrics matters—Future scenarios on milk and beef production in Norway using an LCA approach

Stine Samsonstuen a,b,*, Hanne Møller b, Borgar Aamaas c, Marie Trydeman Knudsen d, Lisbeth Mogensen d. Hanne Fierdingby Olsen

Aim of this study

To calculate and compare the CH_4 emissions from Slovenian cattle production using CO_2 -eq under GWP_{100} and CO_2 -w.e. under GWP^* .

Materials and Methods

CH₄ emission (kT CO₂-eq) calculation:

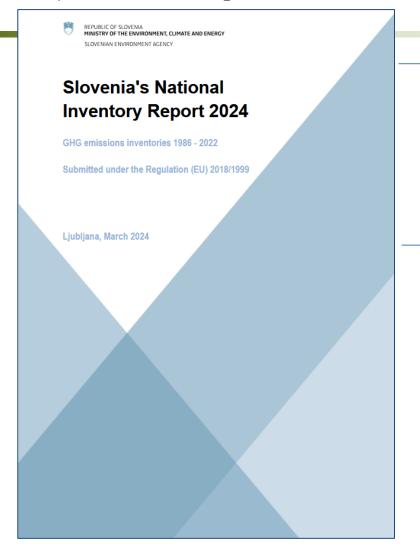


Table 5.1.1: Methods, EFs used and key categories indications for the year 2022 in the Agriculture sector.

	CO ₂		CH ₄			N ₂ O			
	Method	EF	Key cat.	Method	EF	Key cat	Method	EF	Key cat
3.A Enteric Fermentation	NA	NA	NA	T1, T2	CS, D	L, T	NA	NA	NA
3.B Manure Management	NA	NA	NA	T1, T2	CS, D	L,	T1, T2	CS, D	L

PCC	SORS				
Dairy cattle	Dairy cows over 2 years				
Other cows (suckler-cows)	Other cows over 2 years				
Non-dairy cattle	All other cattle				
Non-dairy cattle	YOUNG CATTLE – under 1 year calves for slaughter - young bulls calves for slaughter - young heifers calves for fattening - young bulls calves for fattening - young heifers YOUNG CATTLE – 1 -2 years breeding heifers in calf other breeding heifers heifers for fattening bulls, oxen CATTLE – over 2 years breeding heifers in calf other breeding heifers heifers for fattening bulls for breeding bulls for breeding bulls and oxen for fattening				

- The IPCC and
 EMEP/EEA
 guidelines, adjusting
 Tier 2 to the
 Slovenian conditions
- CO₂ equivalence from the Fifth
 Assessment Report
 (GWP₁₀₀ factors: 28 for CH₄ and 265 for N₂O)

Materials and Methods

Assesing ,CO₂-warming-equivalent' emissions

npj | Climate and Atmospheric Science

www.nature.com/npjclimatsc

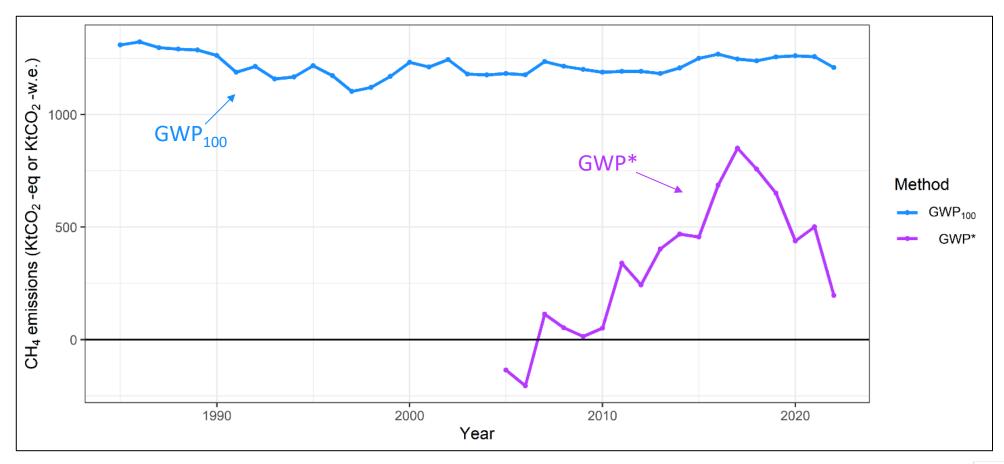
ARTICLE OPEN

Improved calculation of warming-equivalent emissions for short-lived climate pollutants

Michelle Cain 61,2, John Lynch 63, Myles R. Allen 1,3, Jan S. Fuglestvedt 64, David J. Frame and Adrian H Macey 6,7

We applied Cain et al. (2019) **GWP* model** on the total CH₄ emissions (kT CO₂ -eq) between 1985 and 2022:

$$E^*_{CO_{2-we}}(t) = 4 \times E_{CH_4}(t) - 3.75 \times E_{CH_4}(t - 20)$$

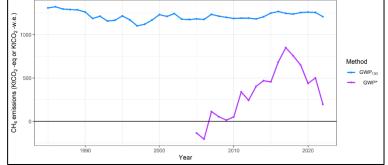

= CH₄ from **enteric fermentation** and **manure management**

Results

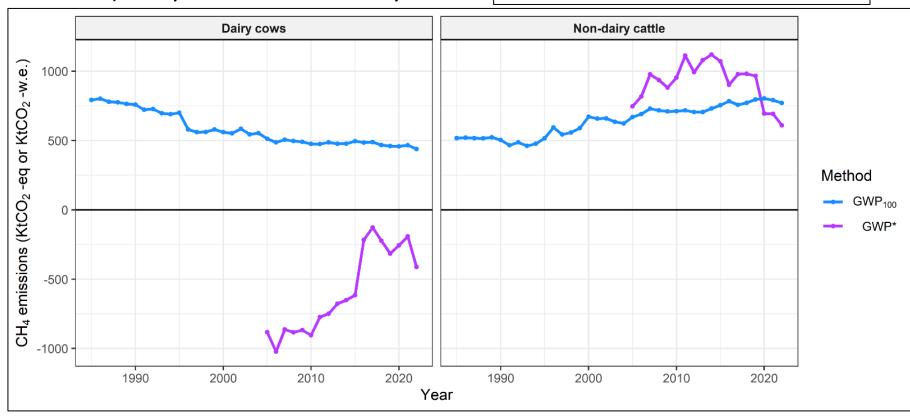
Emissions trends (GWP₁₀₀ vs GWP*)

A) Cattle production (total)

Average GHG emissions from cattle production (2018-2022) amounted to 1,245 kT CO₂-eq and 509 kT CO₂-w.e.



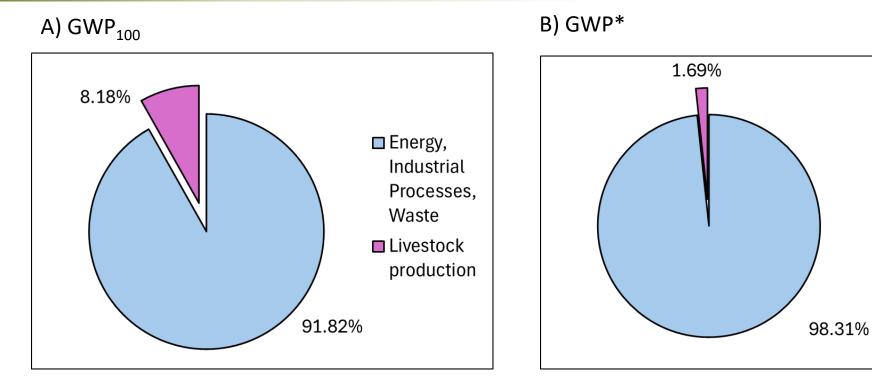
Results


Emissions trends (GWP₁₀₀ vs GWP*)

- The dairy cow: a 'cooling' effect
- The non-dairy cattle : a 'warming' effect
 - with dairy cows averaging 458 kT CO₂-eq and -279 kT CO₂-w.e.
 and
 - non-dairy cattle 787 kT CO₂-eq and 788 kT CO₂w.e
- The trend of CO₂-w.e.
 between 2018 and 2022 was
 negative in all cattle
 categories

A) Cattle production (total)

B) Dairy cows and Non-dairy cattle



Results

Total emissions⁺ (GWP₁₀₀ vs GWP*; average 2018-2022)

- *All anthropogenic emissions in Slovenia when calculated using GWP₁₀₀ and GWP*
- Overestimation of the climate impact of Slovenian livestock production by 4.84 times between 2018 and 2022 using GWP_{100} .

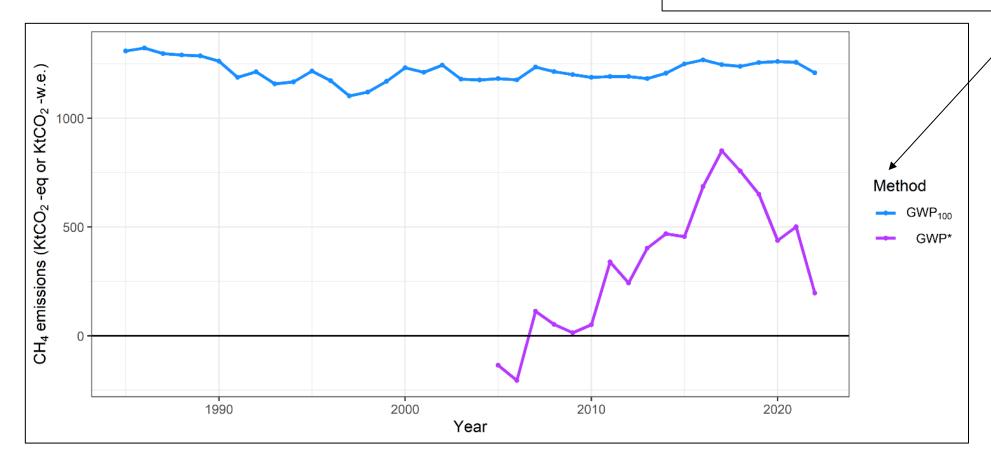
■ Energy,

Waste

■ Livestock

Industrial

Processes,


production

Discussion

Emissions trends (GWP₁₀₀ vs GWP*)

"By comparison expressing methane emissions as CO_{100} equivalent emissions using GWP_{100} overstates the effect of constant methane emissions on global surface temperature by a factor of 3–4,

IPCC (2021), explanation: Lynch et al. (2020)

Discussion

Emissions trends (GWP₁₀₀ vs GWP*)

Knowledge gaps and further work

For more successful advisory and implementation of methane mitigation measures

- Further identification of cattle subpopulations with actual 'warming' effect per:
 - category,
 - breed,
 - geographic region or
 - distinct farms within regions
- **GWP***: more emphasis on the **% of emission change per year** (because of annual differences)
- **GWP*:** scenario simulation

so "How does the dairy sector cope with EU-Green deal"?

Take home messages

- The GWP₁₀₀ approach **overestimated** the **climate** impact of **Slovenian cattle production**.
- In the dairy sector more methane is being oxidised than emitted.

↓ =

The dairy cow sector: a 'cooling' effect, while the non-dairy cattle: a 'warming' effect.

Thank you!

Authors:

Žan Pečnik, M.Sc., M.Sc. (presenting author)

E-mail: zan.pecnik@kis.si

Jože Verbič, PhD

E-mail: joze.verbic@kis.si

