

UNIVERSITÀ

del Sacro Cuore

spectrometry (UHPLC-HRMS) to detect both regulated and emerging mycotoxins in different feed matrices

Marco Lapris*, Michela Errico, Gabriele Rocchetti, Antonio Gallo

Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122 Piacenza, Italy.

*e-mail: marco.lapris@unicatt.it

Abstract

A multi-screening method based on ultra-high-performance liquid chromatography tandem high-resolution mass

Mycotoxins are secondary metabolites produced by filamentous fungi belonging to different genera, such as *Aspergillus*, *Penicillium*, *Fusarium* and *Alternaria*. These compounds can cause several health damages for animals, thus determining reduced animal performance and profitability. In this work, we optimized a multi-screening method to detect both UE-regulated and emerging mycotoxins through UHPLC-HRMS Orbitrap platform, considering a resolution of 70,000 FWHM at 200 m/z. To test the overall performance, different feed samples of interest in dairy cow nutrition including corn silage, cereal silage, hay, corn, soy, rapeseed, sunflower, wheat bran, rice husk and corn germ collected from farms located in Po Valley (Italy) were considered. We identified and accurately quantified several mycotoxins, including fumonisins (R²:0.99, 10-100 μg/kg), trichothecenes (R²: 0.99, 25-1000 μg/kg), zearalenones (R²:0.99, 1-100 μg/kg), enniatins (R²:0.99, 1-1000 μg/kg), mycophenolic acid (R²:0.99, 1-1000 μg/kg), beauvericin (R²:0.99, 1-1000 μg/kg), fusaric acid (R²:0.99, 1-1000 μg/kg), roquefortine c (R²:0.99, 1-1000 μg/kg), 3-nitropropionic acid (R²:0.99, 100-1000 μg/kg), moniliformin (R²:0.99, 10-1000 μg/kg), tenuazonic acid (R²:0.99, 10-250 μg/kg) and alternariol derivatives (R²:0.99, 1-100 μg/kg). Overall, fumonisin B1 was the most abundant mycotoxin detected in both corn silage and corn germ (5,67-6,38 and 3,02-3,22 mg/kg, respectively) while hay, soy and rapeseed were mainly characterized by trichothecenes being DON in the range 0.30-32,2 mg/kg. The developed method will be tested in future applications to monitor the presence of emerging mycotoxins.

In the last few years, research on mycotoxins is moved fast towards the utilization of targeted LC-MSMS and LC-HRMS multiscreening approaches to determine multiple mycotoxins.

Therefore, the so-called multi-screening methods (for both qualitative and quantitative purposes) started to be rapidly developed. One of the major advantages of using HRMS over targeted MS/MS techniques is represented by the possibility to perform both untargeted and retrospective data analysis, with the latter allowing the reconsideration of analytical results from stored data and already analyzed samples.

Particularly, these methods are based on the measurement of accurate MS and MS/MS spectra with a mass resolution lower than 5 ppm. These conditions usually allow the detection of several compounds, together with the possibility to performing a structural elucidation of unknowns. All these aspects represent a valuable tool because of the lack of analytical standards for several known mycotoxins.

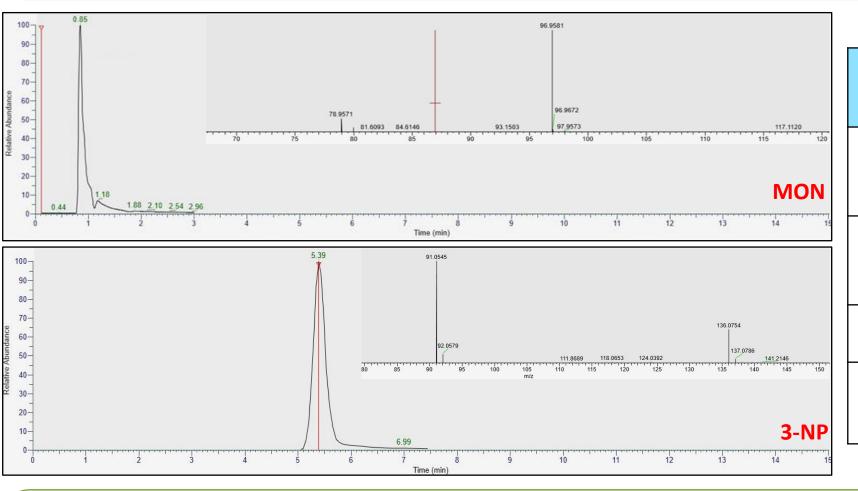
Feed matrices

	LC conditions
Coloumn	Thermo Scientific TM Hypersil GOLD TM aQ, 100 x 2.1mm (1.9 μm)
Coloumn working T°	35 °C
Mobile phase A	Water + 2% Methanol + 5 mM Ammonium Formate + 0.1% Formic Acid + 0.1% Acetic Acid
Mobile phase B	Methanol + 2% Water + 5 mM Ammonium Formate + 0.1% Formic Acid + 0.1% Acetic Acid
LC gradient	At a flow rate of 0.3 mL/min start at 0% B and hold for 0.5 minutes, switch to 30% B and start a linear gradient to 100% B for 8 minutes, hold for one minute, drop to 0% B and equilibrate for three minutes for a total run time of 15 minutes
Volume of injection	3 μl

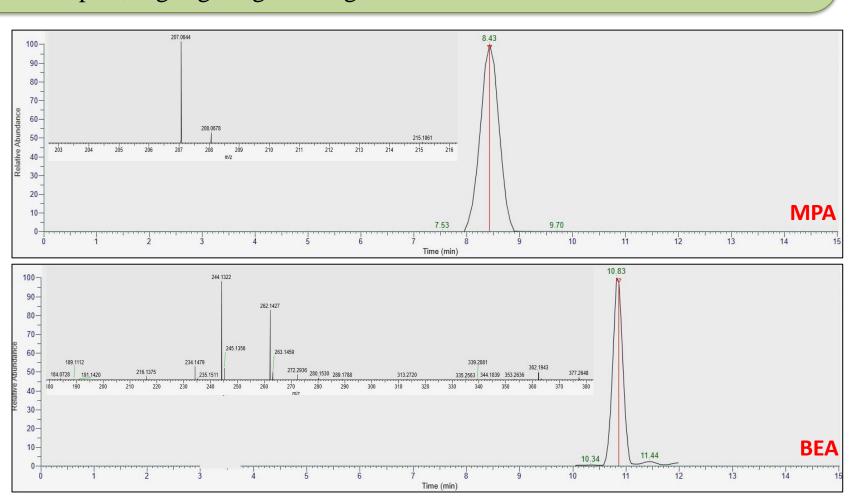
High resolution mass spectrometry											
Negative polarity Positive polarity											
Scan para	meters	MS settin	ngs	Scan para	meters	MS settings					
Scan Type	pe Full MS Sheath gas flow rate 35 Scan Type Full MS				Sheath gas flow rate	40					
Scan range	90.0 to 500.00 m/z	Aux gas flow rate	low 15 Scan range 90.0 to 850.00 m/z		850.00	Aux gas flow rate	20				
Fragmentation	None	Spray voltage (KV)	2.80	Fragmentation	None	Spray voltage (KV)	3.50				
Resolution	70000	Capillary temp (°C)	320	Resolution	70000	Capillary temp (°C)	320				
AGC target 1e6		S-lens RF level	50.0	AGC target	1e6	S-lens RF level	50.0				
Maximum 100		Aux gas heater temp (°C)	50	Maximum inject time	100	Aux gas heater temp (°C)	50				

Regulated mycotoxins												
	AFB1	AFB2	AFG1	AFG2	FB1	T-2	НТ-2	DON	NIV	ОТА	ZEN	
Corn silage	< LOD	< LOD	< LOD	< LOD	6025,04 ± 352.5°	< LOD	< LOD	< LOD	< LOD	< LOD	23.33 ± 7.37 ^a	
Cereal silage	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	
Нау	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	32196.10 ± 5580.16°	< LOD	< LOD	< LOD	
Corn	< LOD	< LOD	< LOD	< LOD	382.03 ± 200.95^{a}	< LOD	< LOD	619.42 ± 54.96 ^a	< LOD	< LOD	< LOD	
Soy	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	2033.75 ± 160.49^{ab}	< LOD	< LOD	< LOD	
Rapeseed	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	4120.72 ± 412.75 ^b	< LOD	< LOD	< LOD	
Sunflower	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	298.29 ± 53.19 ^a	< LOD	< LOD	65.05 ± 6.60 ^b	
Wheat bran	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	765.39 ± 31.13 ^a	< LOD	< LOD	141.59 ± 57.83°	
Rice husk	< LOD	< LOD	< LOD	< LOD	224.54 ± 17.06 ^a	< LOD	< LOD	947.04 ± 93.42 ^a	< LOD	< LOD	n.d.	
Corn germ	< LOD	< LOD	< LOD	< LOD	3116.00 ± 100.91 ^b	< LOD	< LOD	< LOD	< LOD	< LOD	164.55 ± 40.68°	
			Levels of co	ontamination	express in μg/l	kg according	to the UE Re	gulation*				

*Directive 2002/32/EC of the European Parliament and of the council of 7 May 2002 on undesirable substances in animal feed
*Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding
*Commission Recommendation (EU) 2016/1319 of 29 July 2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food


Emerging mycotoxins

Focusing our attention on emerging mycotoxins we observed that various of these new and more unknown contaminants characterized feed samples analyzed for this trial. Especially, high levels of mycophenolic acid, beauvericin, 3-nitropropionic acid and moniliformin were found in corn silage and cereal silage samples. Through UHPLC-HRMS analysis we were able to recognize their different m/z ratio that were compared with online databases and then quantified with absolutely certainty. The absence of regulation and specific information related to this molecules and thier potential damages on animal health and productivity lead to the awerness that more studies are needed to take under control and prevent the increasing of emerging mycotoxins in field and throughout the feed chain production.


	3/15-Acetyl- DON	3-Glucoside- DON	α/β- Zearalenol	α/β- Zearalanol	Enniatin A	Enniatin A1	Enniatin B	Enniatin B1	Mycophenolic acid	Beauvericin	Gliotoxin	Fusaric acid	Roquefortine C	3- Nitropropionic acid	Moniliformin	Tenuazonic acid	Alternariol	Alternariol monomethyl ether	Tentoxin
Corn silage	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1.67 ± 0.39^{a}	$1.06\pm0.10^{\mathrm{a}}$	969.62 ± 1.47^{g}	365 ± 27.75°	< LOD	1167.76 ± 68.61 ^d	< LOD	1735195.57 ± 76707.43°	34317.4 ± 6139.47 ^b	< LOD	< LOD	< LOD	< LOD
Cereal silage	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	$41.36 \pm 6.74^{\circ}$	14.83 ± 1.22^{b}	2716.99 ± 10.67 ^h	244.45 ± 1.48^{d}	< LOD	< LOD	< LOD	7325360 ± 638482.85 ^d	76934 ± 14.313.67°	< LOD	< LOD	< LOD	< LOD
Hay	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1.18 ± 0.82^{a}	$0.27\pm0.04^{\rm a}$	8.59 ± 0.022^{a}	0.74 ± 0.0013^{a}	< LOD	< LOD	< LOD	881.9 ± 24.05^{a}	9541.8 ± 4200.87 ^a	0.91 ± 0.14^{a}	< LOD	< LOD	< LOD
Corn	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	380.13 ± 01.03°	36.50 ± 1.47^{b}	< LOD	118 ± 16.5^{b}	< LOD	2930.25 ± 679.08 ^a	911.88 ± 209.8 ^a	4.14 ± 2.98^{a}	< LOD	< LOD	< LOD
Soy	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1.46 ± 0.41^{a}	0.76 ± 0.10^{a}	380.08 ± 5.84^{e}	50.44 ± 1.73^{b}	< LOD	128.23 ± 4.01 ^b	< LOD	12496.19 ± 901.93 ^a	798.23 ± 260.81 ^a	8.27 ± 6.37^{a}	< LOD	< LOD	< LOD
Rapeseed	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	21.40 ± 2.69^{b}	7.52 ± 0.45^{ab}	371.42 ± 0.42^{d}	35.35 ± 0.23^{b}	< LOD	< LOD	$102\pm0.08^{\rm b}$	7734.15 ± 115.65 ^a	6562.94 ± 1009.93 ^a	11.17 ± 4.3^{a}	< LOD	< LOD	$8.24 \pm 0.62^{\circ}$
Sunflower	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	5.33 ± 0.6^{ab}	$3.32\pm0.53^{\mathrm{a}}$	$387.16 \pm 0.88^{\rm f}$	37.52 ± 0.4^{b}	< LOD	< LOD	102 ± 0.2^{b}	9984.53 ± 134.74 ^a	547.15 ± 109.75 ^a	407.31 ± 29.54 ^b	24.94 ± 1.21^{d}	5.49 ± 0.21 d	123.19 ± 37.07 ^b
Wheat bran	< LOD	< LOD	< LOD	< LOD	54.91 ± 16.83 ^b	< LOD	240.65 ± 29.52^{d}	85.89 ± 19.47^{c}	319.2 ± 0.72^{b}	33.41 ± 0.85^{b}	< LOD	< LOD	< LOD	4637.32 ± 515.45 ^a	5635.10 ± 1499.61 ^a	22.79 ± 1.75^{a}	3.83 ± 0.34^{b}	< LOD	18.04 ± 1.34^{ab}
Rice husk	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1.96 ± 0.52^{a}	$0.64\pm0.20^{\rm a}$	371.94 ± 0.58^{d}	$177.47 \pm 38.9^{\circ}$	< LOD	100.92 ± 6.84^{b}	< LOD	3072.43 ± 170.52 ^a	1469.19 ± 1219.77 ^a	379.35 ± 90.97 ^b	$17.22 \pm 2.31^{\circ}$	$4.77 \pm 0.64^{\circ}$	36 ± 8.05^{b}
Corn germ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.68 ± 0.15^{a}	1.45 ± 1.68^{a}	$349.5 \pm 0.78^{\circ}$	$193.5 \pm 24.46^{\circ}$	< LOD	799.70 ± 38.22°	< LOD	452727.09 ± 20378.52 ^b	27785.26 ± 7304.39 ^b	< LOD	< LOD	1.29 ± 0.11^{b}	< LOD
	Levels of contamination express in μg/kg																		

Statistical analysis

A one-way analysis of variance (ANOVA) and a post-hoc test (Duncan test) was conducted to determine the significance of the data with a confidence level of 95% (P < 0.05). The results obtained from these statistical procedures revealed significative differences between each average level of mycotoxin contamination related to each analyzed matrix. According with this method, it is possible to cluster samples in different sub-groups for each contamination level. The statistical analysis confirmed significant differences in the contamination of different feed samples, highlighting a strong matrix effect.

	Emerging mycotoxin	Formula	Mass (m/z)	Species	R.T. (min)	Ionization	Fragment ion
	Moniliformin (MON)	C ₄ HO ₃	96.99312	1	0.85	ESI -	78.95
3.	-nitropropionic acid (3-NP)	C ₃ H ₅ NO ₄	137.05568	+ NH ₄	5.39	ESI +	91.05
]	Mycophenolic acid (MPA)	$C_{17}H_{20}O_6$	321.13326	+ H	8.43	ESI +	207.06
	Beauvericin (BEA)	C ₄₅ H ₅₇ N ₃ O ₉	801.44331	+ NH ₄	10.83	ESI +	244.13- 262.14

Conclusions

LC-HRMS is a rising approach, and it is today highly suitable for detecting multiple mycotoxins and modified mycotoxins in feed samples, although the proper quantification and detection of masked/hidden mycotoxins in complex matrixes is still one of the major obstacles. Additionally, the implementation of regulations for the so-called emerging mycotoxins is still challenging. HRMS combined with an omics-approach has the potential soon to be of great help to regulatory bodies to limit the presence of mycotoxins feed products. This developed multi-screening method allows us to identify and quantify 37 mycotoxins, both EU-regulated and not regulated, but our aim for the future is to enhance this screening method with other emerging mycotoxins of interest in animal feeding and related with health and performance problems.