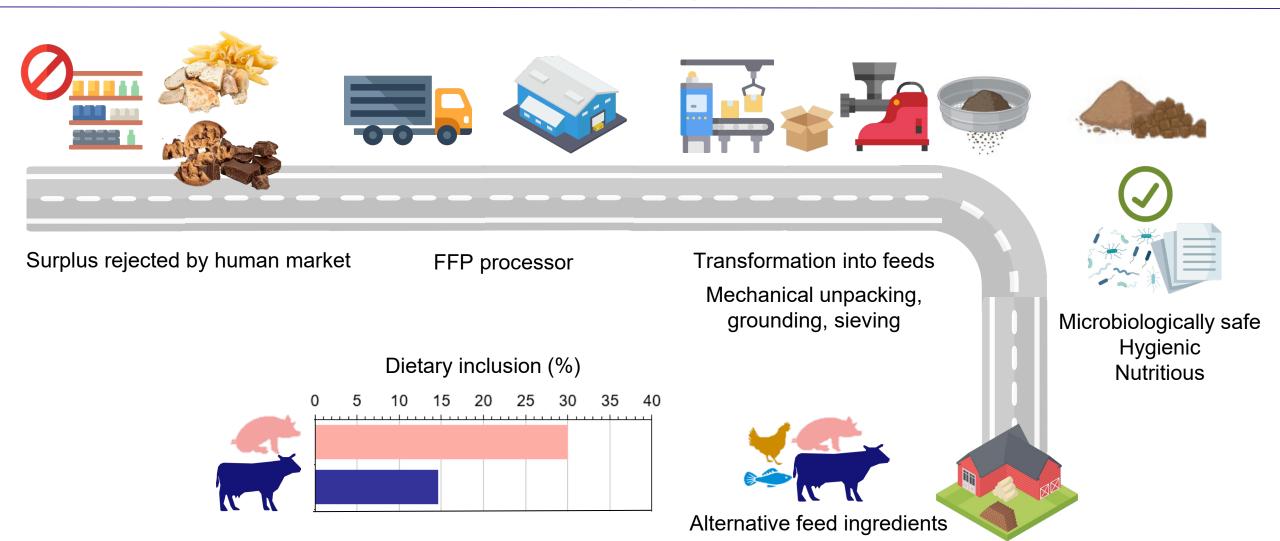


Detecting microplastics in feces of pig fed former food products

Peng Lin^{1,2}, S. Mazzoleni¹, A. Luciano¹, M. Tretola², G. Bee², and L. Pinotti¹

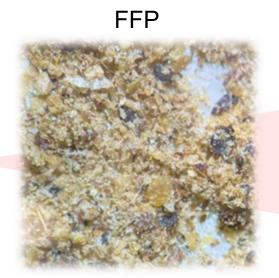
¹University of Milan, Department of Veterinary Medicine and Animal Sciences, Via dell'Università 6, 26900 Lodi, Italy, ²Agroscope, Route De La Tioleyre 4, 1725 Posieux, Switzerland; peng.lin@unimi.it

04. Sep 2024, Florence


Session 89

"Free communications in animal nutrition"

Introduction - Former Food Product (FFP) and its use in animal nutrition



Kaltenegger et al. (2020); Mazzoleni et al. (2023); Tretola et al. (2024)

Introduction - FFP and potential packaging remnants

Packaging remnants found in FFP

Commo

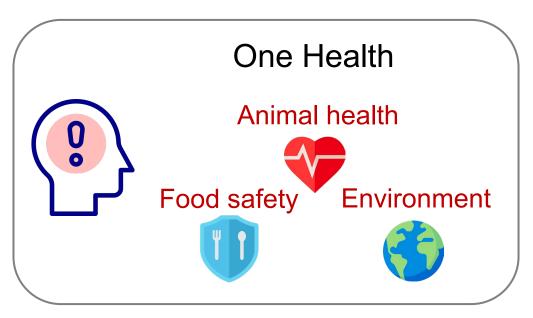
Common packaging materials used in FFP

Aluminum Cellulose Plastic

Zero packaging remnants

Practicality and feasibility

Mazzoleni et al. (2023)



Introduction - Microplastics

Plastic packaging remnants are present in feed produced from FFP

Microplastics (MP) are known to occur in biological matrices
All synthetic polymer particles < 5 mm
(organic, insoluble and resist degradation)

Objective

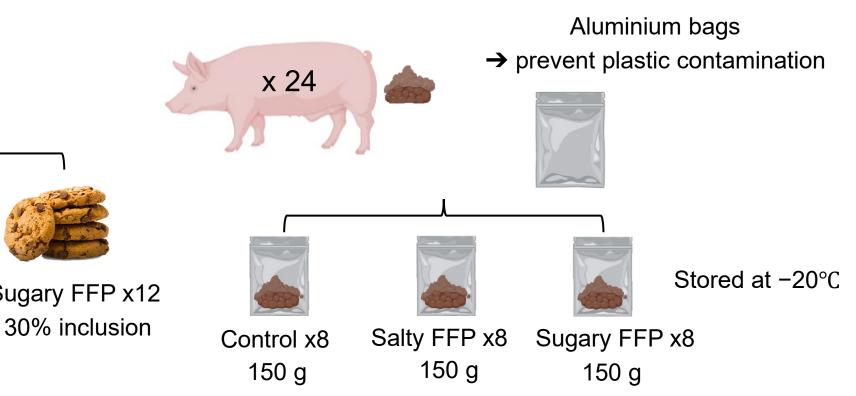
Test effectiveness of the selected method for...

Pig feces digestion

Material separation by density solution

MP extraction and detection

Masiá et al. (2019); Gallitelli et al. (2022); Mazzoleni et al. (2023); Corte Pause et al. (2024)



Animal and diets Growing-finishing pigs $(22.4 \pm 1.70 \text{ kg until } 100 \text{ kg})$ x 36 Salty FFP x12 Sugary FFP x12 Control x12

30% inclusion

Feces sample acquisition

In the middle of growing (≥40 kg) and finishing period (≥80 kg) Collecting from 4 consecutive days

Mazzoleni et al. (2023)

Digestion

- 3 g feces (3 technical replicates)
- 25 mL 30% H₂O₂
- At room temperature for a week

Density separation

- 100 mL saturated NaCl solution (density = 1.19 g/cm³)
- Overnight at room temperature

Masiá et al. (2019); Gallitelli et al. (2022)

Reference microplastics

Polymer	Density (g/cm ³)
PE	0.862
PP	1.083
PET	1.216
PVC	1.369
PLA	1.300
PBS	1.234
MB	1.241

The most abundant polymers found in FFP Mazzoleni et al. (2023)

Digestion

- 3 g feces (3 technical replicates)
- 25 mL 30% H₂O₂
- At room temperature for a week

Density separation

- 100 mL saturated NaCl solution (density = 1.19 g/cm³)
- Overnight at room temperature

Masiá et al. (2019); Gallitelli et al. (2022)

Filtration

Sieving

- Pore size 5 mm

Identification

Stereoscope

Fourier transform infrared spectroscopy

Feces digestion

Cellulose
Fiber
(from raw feed)

One week later
After density separation

After filtration

Results and Discussion

We were not able to detect MP in the collected feces

Particles found were mainly cellulose, undigested fibers, and a few aluminium remnants

Low plastic-contamination level in FFP and the experimental farm

30% dietary inclusion of FFP

Non-even distribution of MP in feces

Fecal samples being spotted

Feed intake of pigs

Possible MP retention in the intestine

Amounts of MP excreted < ingested

Need further studies to varify

Wu et al. (2021); Mazzoleni et al. (2023); Corte Pause et al. (2024)

Dilution effect

Conclusion

More research is needed to clearly understand the fate of MP in FFP

- MP remained in animal's intestine
- MP excreted via feces, urine, or other biological matrices
- Proportion of retention and excretion

Currently, there are several methods for MP extraction in animal feces, other methods can be tested to see their effectiveness and to develop optimized protocol

Thank you!

Peng Lin

peng.lin@unimi.it

Peng Lin
PhD student at Università degli Studi di
Milano, Nutritional Sciences

National Center for Technology in Agriculture

