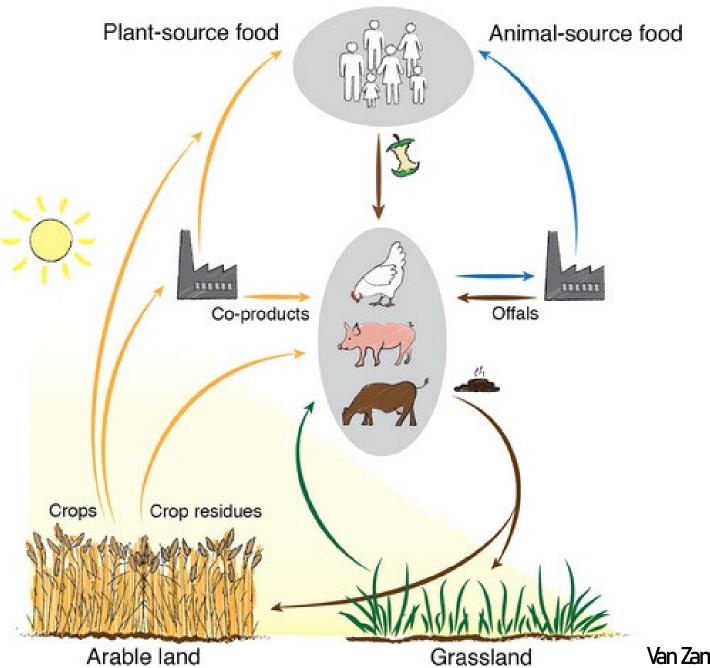


Effect of sire type and a by-product based diet on performance and carcass and meat quality


E Kowelski, M Aluwé, S Janssens, N Buys, S De Smet, S Millet EAAP 2024

Food-Feed-Energy competition

Van Zanten et al., 2018

Remish pig

 Pigs sired by a Belgian Piétrain are known for their optimal performance on high quality feeds

- Conventional diet:
 - Starch-rich
 - Based on cereals and soy
- Future evolution towards more by-products?
 - Higher in fat and fibre

Hypothesis

Slaughter pigs differently selected for high vs low feed intake capacity

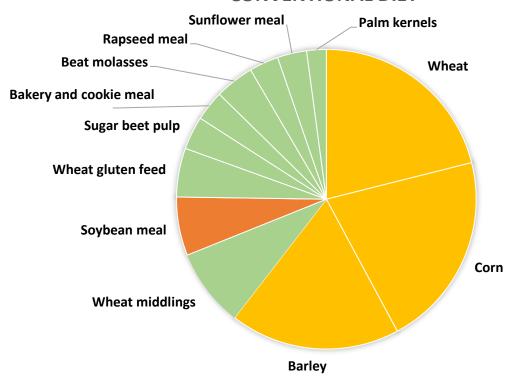
cope differently with by-product-based vs conventional diets

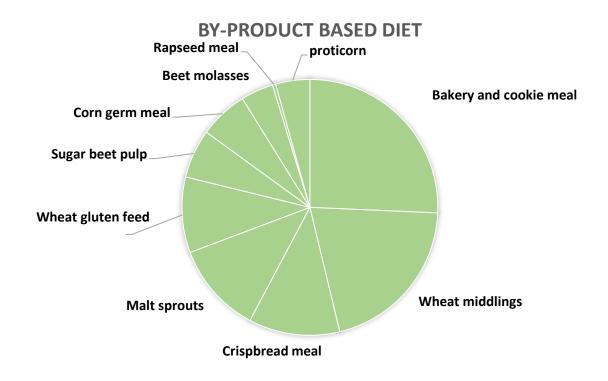
Experimental set-up

2 x 2 design: diet x sire type

- Different genetic capacity for daily feed intake (DH)
- Based on estimated breeding values

	Hgh DA	LowDA
Feed intake	149	82
Growth rate	188	84
Carcass quality	107	141
Feed conversion ratio	123	127


2 x 2 design: diet x sire type


	Phase 1 9-14 weeks	Phase 2 14-20 weeks		Phase 3 20 weeks-slaugh	
		Conv.	By-product	Conv.	By-product
Crude protein, (g/kg)	160	160	160	150	150
Orude fat (g/kg)	49	46	7 5	40	68
Orude fibre (g/kg)	40	45	60	45	60
Starch (g/kg)	353	349	246	361	265
Energy (MJ/kg)	9.6	9.4	9.4	9.3	9.3

Feed composition: phase 3

CONVENTIONAL DIET

Results

14 weeks until slaughter	Conventional By-product	LowDR	Hgh DR	P-value (feed)	P-value (sire)
Growth rate (g/day)	1081 1025	963	1144	0.028	<0.001
Feed intake (g/day)	2845 2702	2548	3000	0.011	<0.001
Feed conversion ratio (g/g)	263 264	2.65	262	0.914	0.493

By-product-based diet led to lower growth rate and feed intake, but similar feed conversion ratio

14 weeks until slaughter	Conventional	By-product	LowDA	Hgh DR	P-value (feed)	P-value (sire)
Growth rate (g/day)	1081	1025	%3	1144	0.028	√0.001
Feed intake (g/day)	2845	2702	2548	3000	0.011	-0.001
Feed conversion ratio (g/g)	263	264	265	262	0.914	0.493

Offspring of sires
selected for low DFI
had a slightly lower
growth rate and feed
intake, but similar feed
conversion ratio

	Conventional	By-product	LowDFI	Hgh DR	P-value (feed)	P-value (sire)
Dressing yield (%)	79.4	78.5	79.3	78.6	0.009	<0.001
Lean meat content (%)	629	63.7	64.4	622	0.585	<0.001

Lower dressing yield for pigs fed on high fibre and fat diet

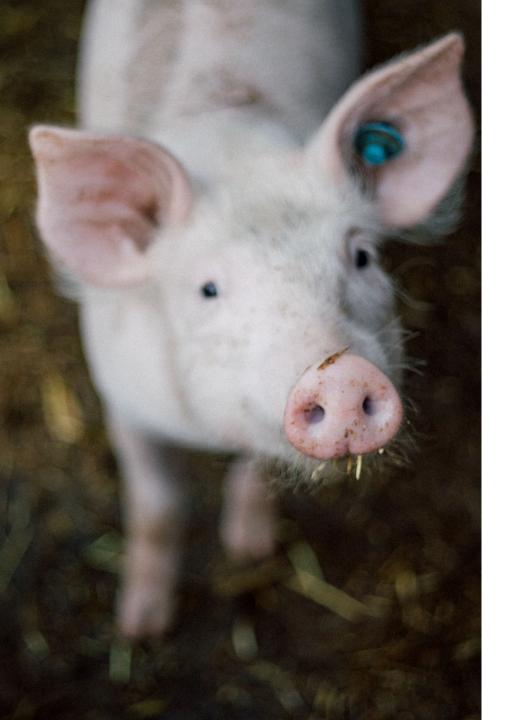
	Conventional	By-product	LowDA	Hgh DA	P-value (feed)	P-value (sire)
Dressing yield (%)	79.4	78.5	79.3	78.6	0.009	√ 0.001
Lean meat content (%)	62.9	63.7	64.4	62.2	0.585	-0.001

Offspring of sires selected for low DFI had higher dressing yield and lean meat content

	Conventional	By-product	LowDR	Hgh DFI	P-value (feed)	P-value (sire)
Initial pH	6.55	6.56	6.55	6.56	0.961	0.887
Drip loss (%)	8.46	9.04	8.71	8.71	0.716	0.969
Intramuscular fat content (%)	217	209	201	2.25	0.169	

Taste and meat quality traits similar for both feeds

	Conventional	By-product	LowDA	Hgh DR	P-value (feed)	P-value (sire)
Initial pH	6.55	6.56	6.55	6.56	0.961	0.887
Drip loss (%)	8.46	9.04	8.71	8.71	0.716	0.969
Intramuscular fat content (%)	217	2.09	201	225	0.169	0.030


Intramuscular fat content was higher for the offspring of high DR, but other meat quality traits and taste were similar

Lean pig genotypes differing in feed intake capacity may cope well with by-product-only based diets that are less prone to feed-food-energy competition

Sire genotype had a larger effect on performance and carcass fatness compared to diet in the present study

Thank you for your attention!

Link to full paper

