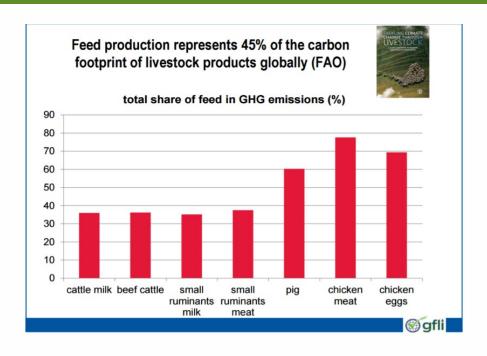
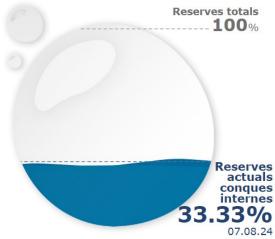


The impact of white sorghum inclusion in growing-finishing pig diets on growth performance and feed digestibility





Reduction of the environmental impact in the porcine industry

Imported feed ingredients:

- Deforested areas.
- Need for transportation.

Feed ingredients adapted to local conditions (Catalonia, Spain):

- Periodic droughts
- Poor soil quality.

AGRONUTRICC project

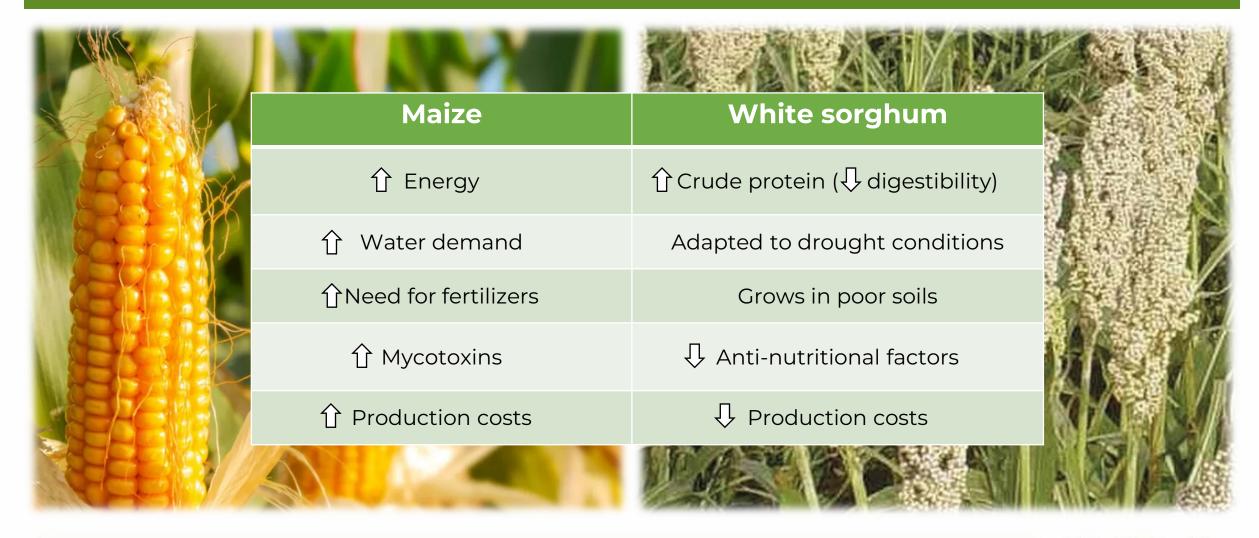
Implementation of an agricultural and livestock production system (pork) linked to nutritional strategies with cereal varieties adapted to climate change.

New varieties of alternative cereals

- Productivity
- Nutritional value

Feed production

Life cycle analysis


- Growth performance
- Feed digestibility
- Slaughterhouse results

Maize vs. white sorghum

Objectives of the study

Evaluate the impact of dietary replacing conventional ingredients by a **white sorghum** variety, adaptable Mediterranean drought conditions, on growth performance and feed digestibility in growing-finishing pigs.

Perform a life cycle analysis (LCA) of the diets provided in the study.

Poster **90.16:** Effect of dietary hybrid rye inclusion on growth performance of growing-finishing pigs.

90.16 Effect of dietary hybrid rye inclusion on growth performance of growing-finishing pigs

F. González-Solé1*, R. Vinyes2, O. Cano3, J.F. Pérez1 and D. Solà-Oriol3

rsity of Barcelona, Animal Nutrition and Welfare Service (SNiBA), Travessera dels Turons, 08193 Cerdanyola del Vallès, Spair

Hybrid rye is a drought-tolerant cereal variety with good adaptability to poor-quality soils. It is more resistant to ergot and fusarium and has

This study assessed the effect of feeding hybrid rye substituting wheat and maize grain as source of energy in diets fed to growing-finishing pigs on their growth performance and ATT digestibility

MATERIAL AND METHODS

4.6 kg, were distributed across 48 pens based on weight and sex

	owing 1 Gr	owing 2	Finishing
dO	d 21	d 49	d 105
Ŷ	IŮ	ľ	
	d 15	d 45	d 73

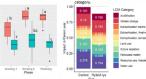

CON and HR (Table 1).

Table 1. Four main ingredients included in the dietary formula of CON and HR for

each phase.						
Ingredient	CON	HR	CON	HR	CON	HR
Maize	30.83	15.83	30.58	20.74	35.00	23.13
Wheat	28.31		34.09		30.82	
Rye		40.00		40.00		40.00
Soybean meal 46%	14.10	15.90	13.80	16.37	12.80	14.06
*Diets included a 19			arth as an	indigestible	marker for	average

Table 2. Growth performance of pigs fed with the CON and HR diets during

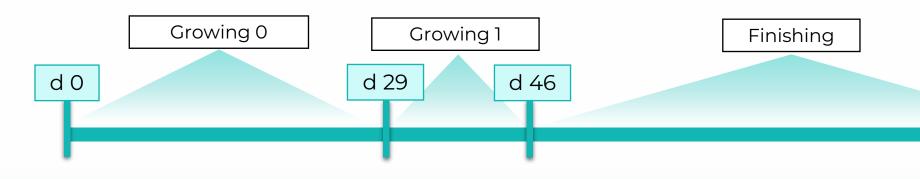
	Phase	Parameter	CON	HR	SEM	P value			
d 0	d 0		26.1	26.1	0.61	0.901			
	d 21	Body weight, kg	41.0	40.8	0.32	0.913			
	d 49	Body Weight, Kg	65.6	66.8	0.73	0.192			
	d 105		111.9	111.4	0.84	0.826			
	Growing 1, d ADFI, kg 0.69 0.70 0.017 0 - 21 ADFI, kg 1.24 1.23 0.016	0.786							
		ADFI, kg	1.24	1.23	0.017 0.786				
	0-21	FCR	1.80	1.76	0.032	0.396			
		Mortality, %	1.58	0.76	0.641	0.358			
Growing 2 ADG, kg	ADG, kg	0.87	0.93	0.023	0.074				
	d 21 – 49	ADFI, kg	1.82	1.89	0.023	0.025			
	021-49	AUF, kg 1.24 1.23 FCR 1.80 1.76 Mortality, % 1.58 0.76 Mortality, % 1.58 0.76 Mortality, % 1.59 0.93 Mortality, % 1.77 0.80 Mortality, % 1.17 0.80 Mortality, % 1.17 0.80 Mortality, % 1.75 Mortality, % 2.07 2.06 AUF, kg 2.07 2.06	0.047	0.496					
		Mortality, %	1.17	0.00	0.640	0.061			
	Cinishina	ADG, kg	0.81	0.79	0.016	0.293			
d 49 – 105	2.06	0.027	0.821						
	FCR	2.55	2.64	0.057	0.296				
		Mortality, %	0.79	0.76	0.541	0.965			
	Growing-	ADG, kg	0.81	0.81	0.010	0.786			
	Calabia	ADEL In	4.00	4.05	0.010	0.500			

White sorghum variety selected for the study

A previous study evaluated different varieties of white sorghum based on:

- Productivity
- Nutritional value
- Anti-nutritional factors content

Variety	Dry matter, %	Crude protein, %	Crude fiber, %	Ashes, %	Crude fat, %	Starch, %	Total sugars, %
ARSENIO	86.24	12.1	4.0	1.8	2.8	61.5	0.26


Methods: experimental design

528 pigs ([Landrace x Yorkshire] x Pietrain, initial BW of 31kg \pm SD 3.43) distributed by weight and sex in 48 pens of 11 animals.

24 pens by treatment:

- Control: Feed including a 35% of maize.
- White sorghum (WS): Feed including a 50% of white sorghum.

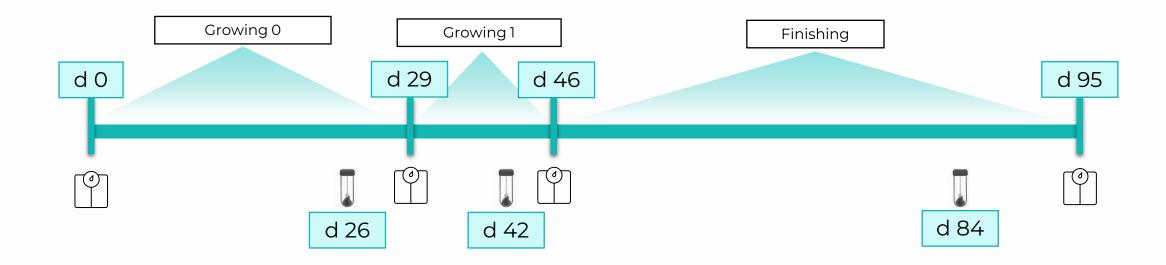
Three phases and feeds:

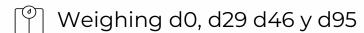
d 95

	Grow	ing 0	Grow	Growing 1		Finishing	
Ingredient	CONTROL	WS	CONTROL	WS	CONTROL	WS	
Maize	35	-	35	-	35	-	
White sorghum	-	50	-	50	-	50	
Wheat	21.53	10.34	23.12	11.61	25.54	16.00	
Soybean meal 46%	14.19	10.44	11.01	6.47	11.15	8.34	
Barley	20	20	15	15	15	15	
Rapeseed	-	-	6.52	7.55	2.92	-	
Bakery product	2.74	2.25	2.58	2.08	4	4	
Lard 1° BAT	1.11	1.29	0.91	1.18	0.16	-	
Lard 3/5 acidicity	0.6	0.6	1.3	1.3	1.5	1.52	
Bicalcium phosphate	0.95	0.94	0.76	0.75	0.37	0.5	
Salt	0.4	0.4	0.4	0.4	0.4	0.39	
Calcium carbonate	0.35	0.38	0.37	0.38	0.89	0.88	
Lysine 50%	0.95	1.12	0.96	1.15	0.94	1.13	
Metionine 88%	0.19	0.22	0.14	0.18	0.14	0.21	
Treonine	0.24	0.27	0.23	0.25	0.28	0.31	
Valine	0.09	0.08	0.08	0.07	0.09	0.08	
Triptophan	0.04	0.05	0.04	0.05	0.05	0.06	
Vit-min premix	0.2	0.2	0.2	0.2	0.2	0.2	
Liquid acids	0.2	0.2	0.2	0.2	0.2	0.2	
Enzime supplement	0.04	0.04	-	-	-	-	
Coline	0.02	0.02	0.02	0.02	0.02	0.02	
Phitase, xilanase i B-glucanase	0.01	0.01	0.01	0.01	0.01	0.01	
Antifungal	0.15	0.15	0.15	0.15	0.15	0.15	
Diatomaceous earth	1	1	1	1	1	1	

	Growing 0		Growing 1		Finishing	
Ingredient	CONTROL	WS	CONTROL	WS	CONTROL	WS
Maize	35	-	35	-	35	-
White sorghum	-	50	-	50	-	50
Wheat	21.53	10.34	23.12	11.61	25.54	16.00
Soybean meal 46%	14.19	10.44	11.01	6.47	11.15	8.34

	Growing 0		Growing 1		Finishing	
Analyzed nutritional composition	CONTROL	ws	CONTROL	WS	CONTROL	WS
Dry matter, %	87.71	87.34	88.07	87.92	88.43	88.57
Gross energy, kcal	3863	3914	3923	3973	3903	3904
Crude fat, %	3.93	4.18	4.25	4.86	3.92	3.92
Crude protein, %	14.88	15.78	15.21	15.80	14.67	15.66
Ashes%	4.40	4.71	4.38	4.41	4.53	4.64
Neutral detergent fiber, %	12.33	13.04	12.36	12.32	11.70	11.22
Starch, %	49.73	49.15	46.40	46.69	50.03	50.18

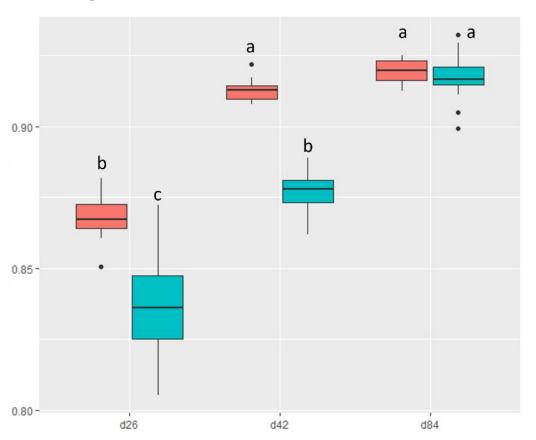


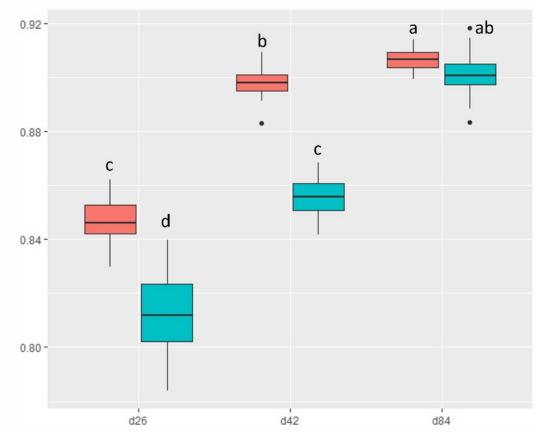


Methods: sampling

Results: productive performance and carcass measurements

Phase	Parameter	CONTROL	WS	SEM	<i>P</i> value
D 0	BW, kg	30.8	31.1	0.59	0.700
D 29	BW, kg	54.9	53.6	0.32	0.042
D 46	BW, kg	70.4	68.8	0.40	0.039
D 95	BW, kg	106.3	104.9	1.08	0.137
	ADG, kg	0.828	0.782	0.0108	0.008
D 0 - 29	ADFI, kg	1.457	1.431	0.0264	0.317
	FCR	1.76	1.83	0.041	0.016
	ADG, kg	0.906	0.888	0.0202	0.572
D 29 - 46	ADFI, kg	1.452	1.406	0.0245	0.260
	FCR	1.62	1.59	0.043	0.615
	ADG, kg	0.734	0.735	0.0152	0.966
D 46 - 95	ADFI, kg	1.864	1.868	0.0280	0.883
	FCR	2.55	2.55	0.085	0.919
	ADG, kg	0.794	0.776	0.0119	0.032
D 0 - 95	ADFI, kg	1.666	1.652	0.0241	0.488
	FCR	2.10	2.13	0.060	0.142
	Lean %	0.643	0.641	0.34	0.381
	Carcass yield	0.796	0.793	0.59	0.534

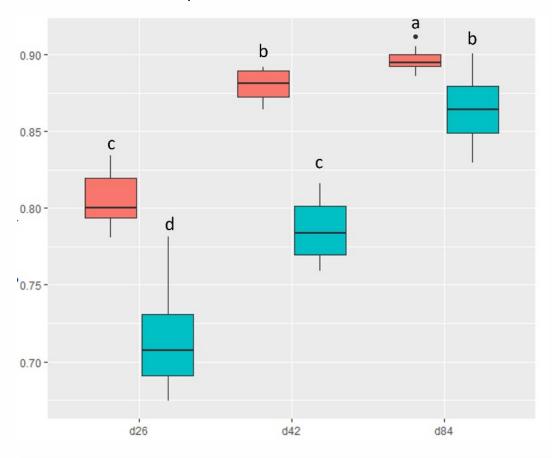


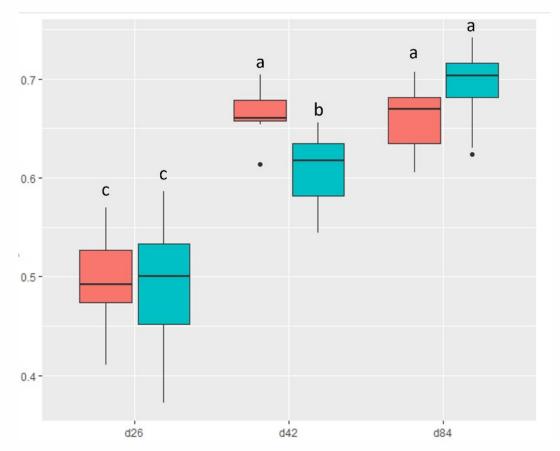


Results: fecal average total tract digestibility (ATTD)

Organic matter ATTD

Gross energy ATTD

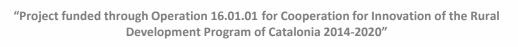




Results: fecal ATTD

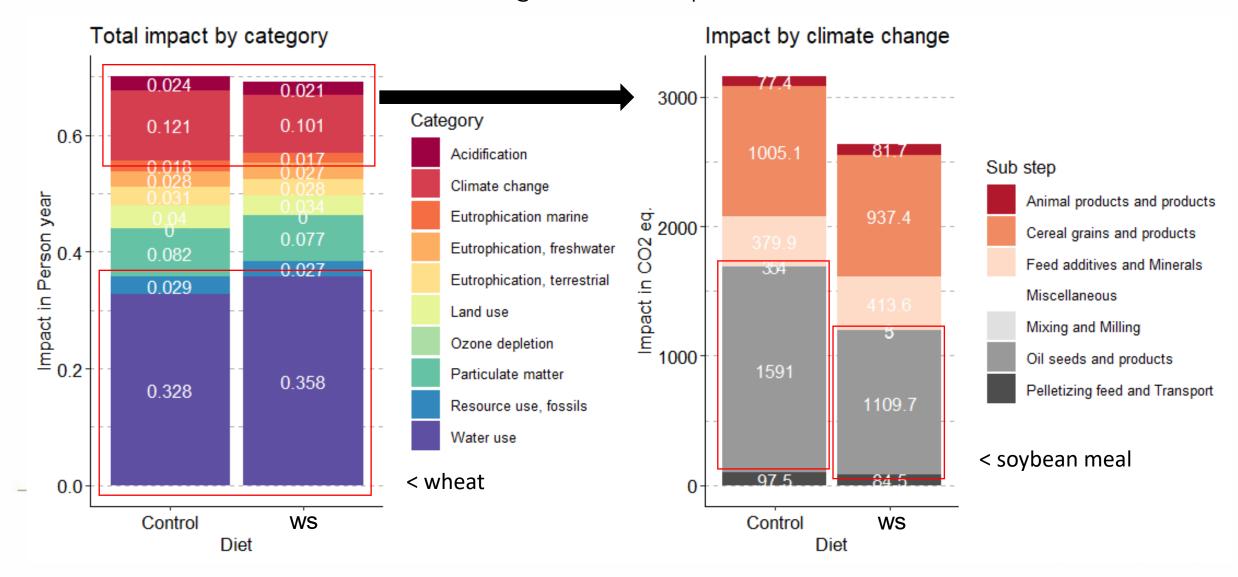
Crude protein ATTD

Neutral detergent fiber ATTD



CONTROL

Life cycle analysis (LCA)


Ingredient LCA (1 ton) – grown in Catalonia

EF 3.1 methodology (Economic allocation)

LCIA categories	White sorghum, 1 ton	Maize, 1 ton	Wheat, 1 ton
Climate change (kg CO2 eq)	262	257	596
Water use (m3 depriv.)	21387	27885	27
Acidification (mol H+ eq)	1.81	1.91	4.59
Particulate matter (disease inc.)	1.16E-04	1.01E-04	2.61E-04
Eutrophication, marine (kg N eq)	2.7	2.5	5.5
Eutrophication, freshwater (kg P eq)	0.38	0.30	0.58
Eutrophication, terrestrial (mol N eq)	24.9	23.2	57.1
Land use (Pt)	75975	53384	254439
Ozone depletion (kg CFC11 eq)	1.3E-05	1.5E-05	4.4E-05
Resource use, fossils (MJ)	1008	1200	3393
Total impact (Py)	0.284	0.345	0.143

Feed production LCA (1 ton) using OpteinicsTM (BASF, Germany)

GFLI 2.0 reference tables for the rest of ingredients and processes.

Conclusion

Phase	Variable	White sorghum vs control	
d 0-29	Growth performance	Worst growth and efficiency	
u 0-29	Fecal ATTD	Worst	
d 29-46	Growth performance	Similar	
u 29-40	Fecal ATTD	Worst	
	Growth performance	Equal	
d 46-95	Fecal ATTD	Similar except for CP: Control: 89.7% vs White sorghum: 86.5%	

- The inclusion of **up to 50% white sorghum** (Arsenio) in **finishing feed** formulations for pigs (> 70kg BW) does **not negatively impact** their **growth** performance.
- The inclusion of white sorghum (Arsenio) in the feed formula offers a **sustainable** alternative that can help reduce the environmental impact of production.

