

Effects of supplementation with vitamin E or plant extracts on redox and immune status in early lactating dairy cows

Session 93: Preventive approaches to livestock diseases to reduce drug resistance

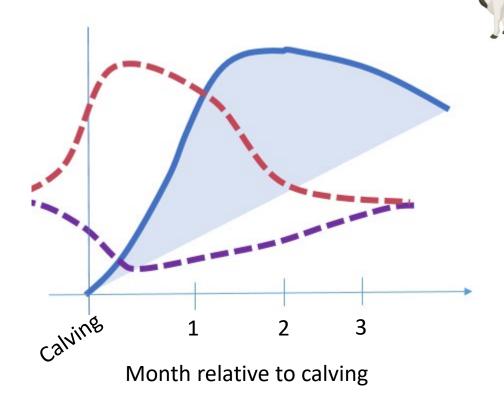
<u>A. Corset</u> ^{1,2}, A. Boudon¹, A. Remot³, S. Philau¹, M. Lemarchand¹, C. Mustiere¹, L. Le-Normand¹, O. Dhumez¹, JF Ricouleau², B. Graulet⁴, P. Germon³, M. Boutinaud¹

- 1 INRAE-Institut Agro Rennes Angers, UMR 1348 PEGASE
- 2 Biodevas Laboratoires
- 3 INRAE-Université de Tours, UMR 1282 ISP
- 4 INRAE-VetAgro Sup, UMR 1213 Herbivores

The context of early lactation

Early lactation, a critical period

Bradford et al., 2015


→ Milk yield

→ ROS production → Oxidative stress

Castillo et al., 2005

Ingvartsen et Moyes, 2013

➤ Risks <a> Incidence of disease <a> Milk yield

Antioxidant supplementation can be a nutritional strategy to address these issues

What nutritional strategy and why?

Vitamin E
all-rac-alpha-acetate de
tocopherol

- reduces oxidative stress in dairy cows
- improved dairy cows immunity
- reduces the number of clinical mastitis cases

Bouwstra et al., 2008 Politis et al., 2004 Weiss et al., 1997

Plant extracts

- several 100% natural plant extracts

Sambucus nigra, Salix alba, Laurus nobilis, Haragophytum procumbens, Silybum marianum, Arctium lappa

- gene expression activators
- in vitro: stimulated antioxidant enzyme synthesis in cell culture

Vitamin E according to NASEM recommendations

before calving 100 g/d or 3000 IU/d after calving 35 g/d or 1000 IU/d

Plant extracts according to company recommendation after calving 10 g/d

Material and Methods

1- control

n = 15

8 multiparous & 7 primiparous

3 groups of 45 dairy cows

2- vitamin E

n = 16

+ Vitamin E

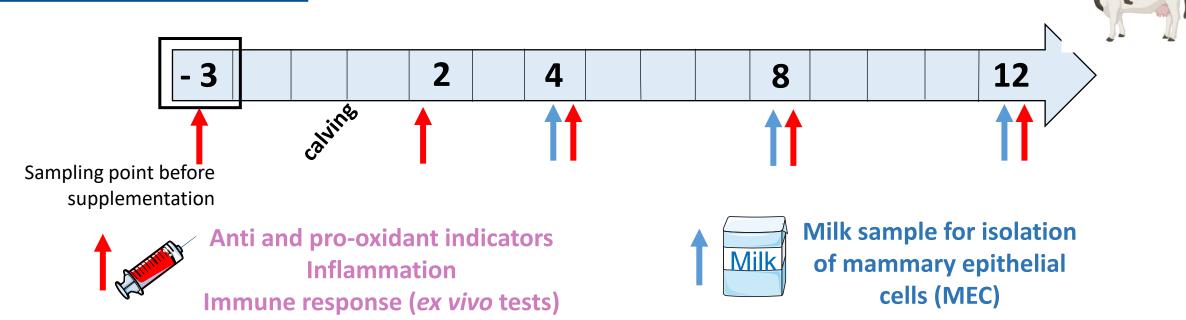
8 multiparous & 8 primiparous

3- plant extracts

n = 14

+

+ Plant extracts


8 multiparous & 6 primiparous

Nutritional supplementation according to lactation weeks:

-	3 cal	lving 4	1	12
Col	ntrol			
	Vitamin E			
		Plant extracts		

Material and Methods

Statistical test: ANOVA to take into account parity, treatment, lactation week, their interactions, and cow random

$$Y(ijkl) = \mu + \text{covariate} + \text{treatment}_i + \text{week}_j + (\text{treatment x week})_{ij} + \text{parity } k + (\text{parity x week})_{kj} + (\text{treatment x parity})_{ik} + (\text{treatment x week x parity})_{ijk} + 1 | \text{cow}_l + \text{calving date}_m + \epsilon_{\text{group}}$$

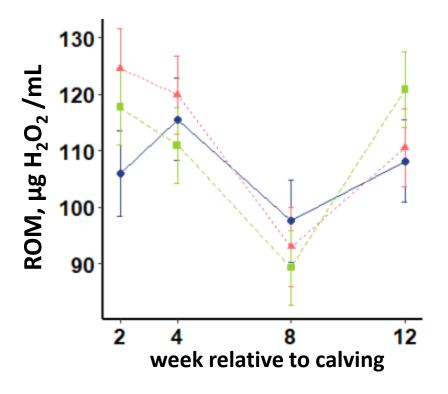
Objective

Demonstrate the effects of nutritional supplementation with vitamin E or plant extracts on redox and immune status

Hypotheses

Part 1 – Redox status → Reduce oxidative stress?

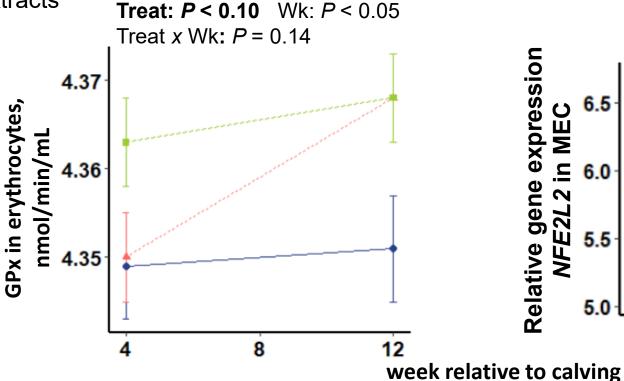
Part 2 – Immune status – Reduce pro-inflammation?

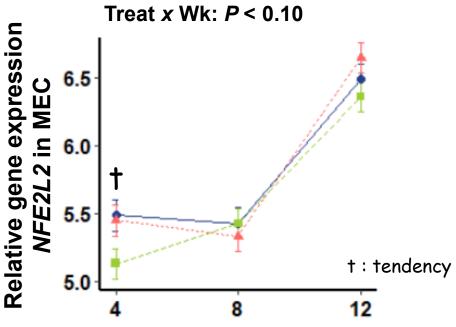


Redox status: oxidative stress was present in first week of lactation

controlvitamin Eplant extracts

Treat: P = 0.78 Wk: P < 0.001 Treat x Wk: P = 0.20


Redox status: Vitamin E and plant extracts had different antioxidant response


------ control

----- vitamin E

→ plant extracts

Treat: P = 0.29 Wk: P < 0.001

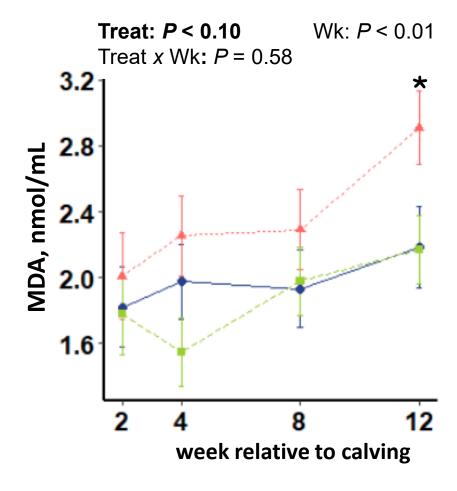
Tendency ✓ GPx antioxidant enzyme activity in erythrocytes in VitE than in PE

GPx: Glutathione peroxidase

Tendency

repression of the antioxidant pathway transcription factor in mammary epithelial cells in PE than in VitE

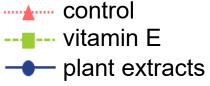
NFE2L2: Nuclear factor (erythroid-derived 2)-like 2 MEC: Mammary epithelial cells

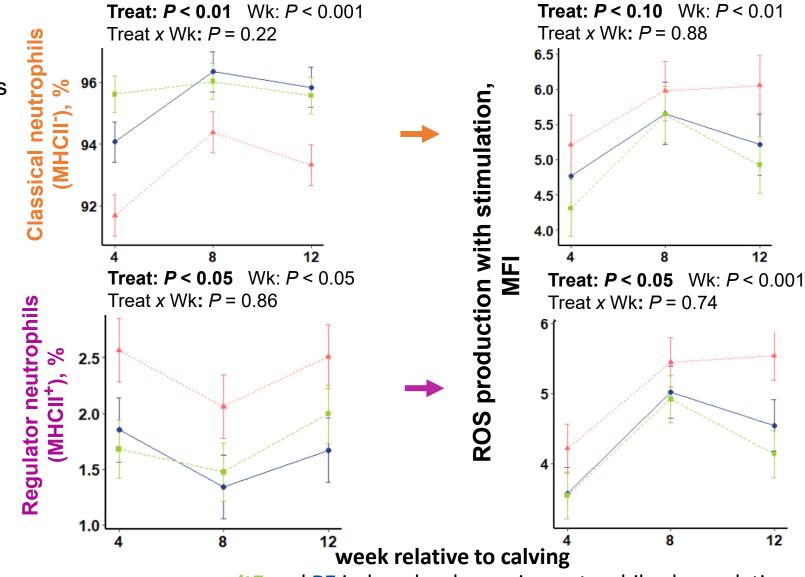

Redox status: vitamin E and plant extracts reduced lipid peroxidation

----- control

--- vitamin E

plant extracts




After 12 week, \(\subseteq \text{ lipid peroxidation in VitE and PE than in control } \)

Immune status: blood neutrophils and their ROS production

vitE and PE induced a change in neutrophil subpopulation

Immune status: vitamin E and plant extracts reduced pro-inflammatory cytokines after an *ex vivo* stimulation of blood cells

Rates of

variation

0.03

0.00

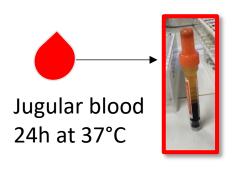
-0.03

0.03

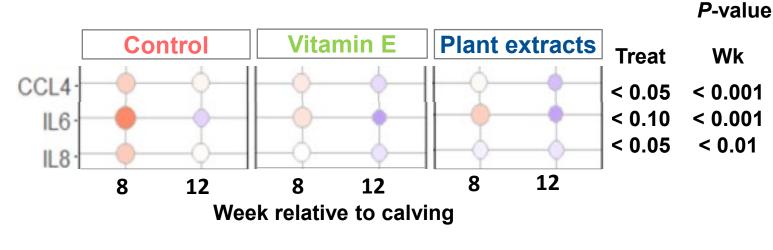
0.00

-0.03

Treat x


Wk

0.57


0.56

0.29

Heat killed bacteria E. coli

Cytokine production measured by bead-based multiplex assay Lesueur *et al.*, 2022

✓ CCL4 with plant extracts
 ✓ IL6 with vitamin E
 ✓ IL8 with vitamin E and plant extracts

□ reduced pro-inflammatory response

Immune status: vitamin E and plant extracts had a specific immune response after an ex vivo stimulation of blood cells

Rates of

variation

0.03

0.00

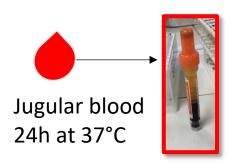
-0.03

0.03

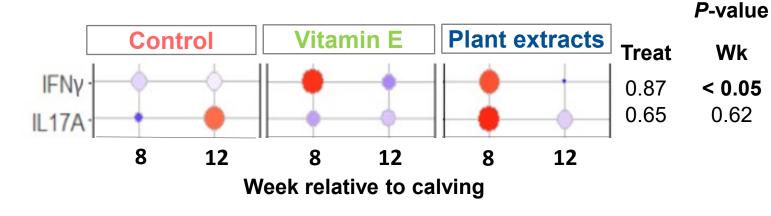
0.00

-0.03

Treat x


Wk

< 0.10


< 0.05

Wk

Heat killed bacteria E. coli

Cytokine production measured by bead-based multiplex assay Lesueur et al., 2022

✓ IFN

γ with vitamin E and plant extracts **↗** IL17A with **plant extracts**

Specific immune response against bacteria

Conclusion Effects of nutritional supplementation with vitamin E or plant extracts:

Part 1 – Redox status

VitE

+ systemic antioxidant response

PE

+ antioxidant capacity local to the mammary gland

Bouwstra et al., 2009

QA different mode of action? Localisation in the organism?

Part 2 – Immune status

vitE PE - regulator neutrophils

Regulator neutrophils suppress T-cell proliferation → VitE and PE avoid immune suppression Rambault et al., 2021

vite PE - inflammatory response in stimulated ex vivo test conditions: avoid hyperinflammation

Hidiroglou et al., 1997

vitE PE + IL17A and IFNγ

Specific immune response against bacteria as suggested in literature to fight mastitis

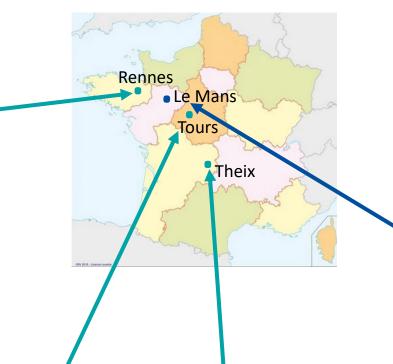
Rainard et al., 2020

Opening

VitE or PE modulated immune response, but this study was conducted in healthy cows.

Coming soon: Results of a second experiment with an inflammation test after intramammary lipopolysaccharide challenge (Poster number 49.26).

Thank you for your attention


Marion Boutinaud Anne Boudon

Experimental farm

Ophélie Dhumez Philippe Lamberton Gaël Boullet

Technical lab:

Sabrina Philau **Perrine Poton Maryline Lemarchand** Colette Mustière **Laurence Le-Normand**

INRAE UMR Herbivores Benoit Graulet

INRAE UMR1282 ISP

Pierre Germon **Aude Remot**

