Effect of a natural solution on gastrointestinal parasitism modulation in heifers

M. HALGRAIN, S. JULLIAND, E. COUDERT, S. POINT, A. EUZENOT, T. CHALVON-DEMERSAY AND C. OMPHALIUS

Chemical Antiparasitics: A Growing Controversy

Note written by the European Medicines Agency = developing different management strategies to prevent infestation and/or keeping infestation pressure at low level (EMA/CVMP/EWP/573536/2013).

Gastrointestinal parasitism (strongyles and coccidia) = impact on production, health and welfare of ruminants (Daugschies and Najdrowski, 2005; Charlier et al., 2009; 2014).

Synthetic anthelmintics can alter digestive microbial communities in ruminants (Xiaolong et al., 2020).

Using of chemical anthelmintics
= most commonly method to
control digestive parasites <u>but</u>
resistance and sustainability
problem (Rose et al., 2015).

Created with Biorender.com

Chemical Antiparasitics: A Growing Controversy

Note written by the European Medicines Agency = developing different management strategies to prevent infestation and/or keeping infestation pressure at low level (EMA/CVMP/EWP/573536/2013).

Development of a natural solution derived from a mix of plants known for their antiparasitic effects

Gastrointestinal parasitism (strongyles and coccidia) = impact on duction, health and welfare of (Daugschies and Najdrowski, 2005; Charlier et al., 2009; 2014).

Synthetic anthelmintics can alter digestive microbial communities in ruminants (Xiaolona et al., 2020).

most commonly method to control digestive parasites but resistance and sustainability problem (Rose et al., 2015).

Chemical Antiparasitics: A Growing Controversy

Note written by the European
Medicines Agency = developing
different management strategies
to prevent infestation and/or
keeping infestation pressure at
low level (EMA/CVMP/EWP/573536/2013).

The metabolites of these anthelmintics are found in feces and have a harmful impact on the **environment** (Floate et al., 2005).

Main objective

Study the effects of this plant-based complex to reduce risks of digestive parasitism in ruminant farming

Synthetic anthelmintics can alter digestive microbial communities in ruminants (Xiaolong et al., 2020).

Gastrointestinal parasitism (strongyles and coccidia) = impact on production, health and welfare of ants (Daugschies and Najdrowski, 2005; Charlier et al., 2009; 2014).

Using of chemical anthelmintics
= most commonly method to
control digestive parasites <u>but</u>
resistance and sustainability
problem (Rose et al., 2015).

Experimental design

Control Group

Acclimatization period

D0

D+28

D+42

D+56

D-21

D-14

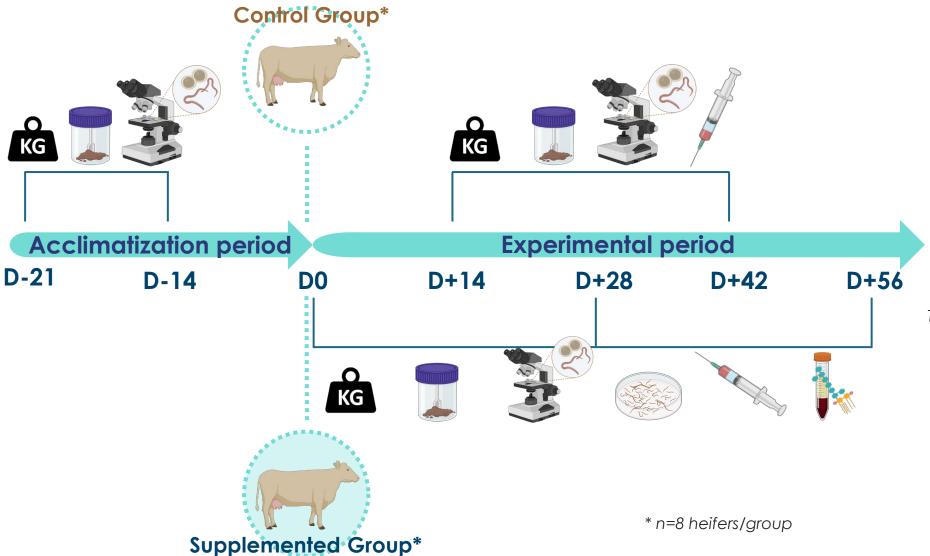
D+14

Experimental period

4 batches

Heifers from ≠ farms

ANIMAL / TRIAL MANAGEMENT


Animal:

- > Pre-selection of animals 4 batches (weight & age).
- ➤ Heifers Limousine x Charolaise: 317 ± 22 kg 9.1 ± 0,7 months old.
- > Grouping during the experimental period (weight & parasitic aspect) – 2 groups (n=8 animals).
 - > Natural but controlled/randomized infestation.

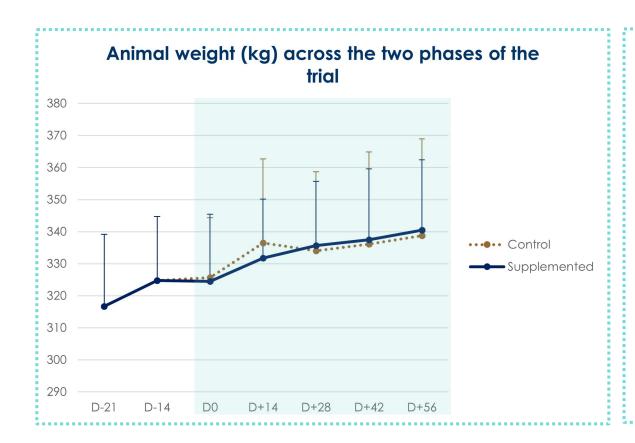
Management:

- > Controlled feeding (ad libitum hay + 200g/j of barley) and housing (straw - collective barn (n=4)).
 - > Product supplementation at 1.5 g/animal.
 - > From June to August 2023.

Experimental design

Statistical analysis

SAS Sofware, ANOVA test (repeated measures) with Time*Group interaction & Fisher Test for larvae mobility


Baseline (D0) as covariate

Significance threshold: p≤0.05

Created with Biorender.com

ZOOTECHNICAL PERFORMANCE - WEIGHT & AVERAGE DAILY GAIN

Average daily gain of animals (kg/day) for each period

Control Group	Supplemented Group	SEM	P-value* TRT	
0.299	0.397	0.096	0.480	
0.174	0.170	0.107	0.977	
0.234	0.286	0.070	0.611	
	0.299 0.174	Group Group 0.299 0.397 0.174 0.170	Group Group 0.299 0.397 0.096 0.174 0.170 0.107	

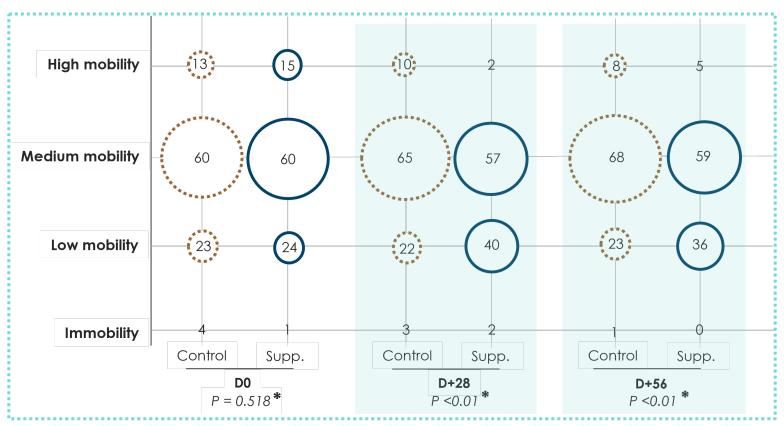
* SAS software, ANOVA Test

No significant difference on weight and average daily gain between the two groups.

PARASITISM EVALUATION - DATA FROM COPROSCOPY - PARASITE EGG COUNT

Means of parasitic counts before and during the experimental period (EPG)

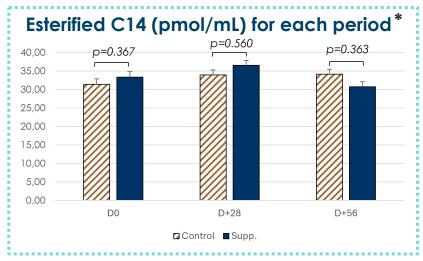
		Control Group	Supplemented Group	SEM	P-value* TRT	P-value * Time	P-value* TRTxTime
Ostertag	gia ostertagi (EPG)						
	D-21	81	58	32	0.541		
	D-14	62	41	7	0.056		
	D0	91	94	18	0.898		
	D0 to D+56	95	81	15	0.516	0.697	0.781
Eimeria l	bovis (EPG)						
	D-21	613	756	222	0.655		
	D-14	331	334	87	0.980		
	D0	656	444	206	0.478		
	D0 to D+56	301	188	58	0.195	< 0.001	0.447

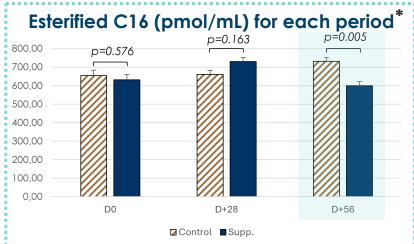

- Pre-experimental period : no differences between groups.
- Experimental period: suppl. with plant extracts = no significant effect but a continuous ↓ in the count of coccidia oocysts was observed in both groups.

The product does not impair the fertility of the parasites...

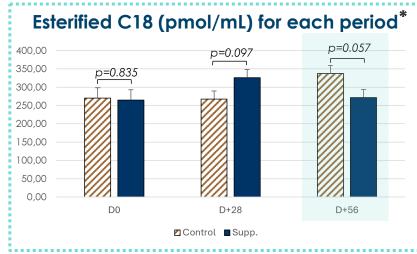
^{*} SAS software, ANOVA Test

PARASITISM EVALUATION - DATA FROM COPROCULTURES - LARVAE MOBILITY


* SAS software, Fisher Test after evaluation by scoring


- At D0, no statistically significant difference was observed in larval mobility.
- Fifects of the plant mixture were observed on this parameter at D+28 and D+56.
- Animals receiving the supplementation = \preceiving highly mobile or mobile larvae and \(\gamma\) weakly mobile larvae compared to the control group.

...However, the larvae from eggs of the treated group seem to be altered...



MARKERS OF INTESTINAL ABSORPTION AND BARRIER INTEGRITY - LIPOPOLYSACCHARIDES (LPS)

- At D0 and D+28: plasma concentrations of LPS did not differ between groups.
- At D+56: Concentrations significantly ↓ for C16 (supp. vs Ctrl) and a similar trend was observed for C18.

The reduction in blood LPS could result from less damage to the intestinal mucosa...

Direct or indirect effect?

^{*} SAS software, ANOVA Test

Conclusion

- > This study aimed to investigate the effect of a natural solution on gastrointestinal parasitism following a natural infestation in young animals.
- Our results show that:
 - Ostertagia ostertagi: Counting of strongyle eggs, pepsinogen and hematocrit measurement (data not presented) did not reveal any differences between the two groups but larvae cultured from feces of supp. animals were less vigorous compared to those from the control group = \(\preceip \) reinfestation and pathogenicity or alteration of development cycle?
 - **Eimeria bovis**: No difference observed but steady decline in the number of oocysts = effect of rearing conditions? Natural immunity?
- Lower plasma LPS concentrations after 56 days in the supp. animals = better intestinal mucosal integrity =effect of the solution on permeability of the intestinal epithelial barrier? Indirect effect?
- These results suggest that the tested solution could favorably modulate gastrointestinal parasitism in livestock without negatively affecting the animals' performance.
- A **complementary study** is currently underway to further investigate and better understand the mode of action of our solution on the intestinal ecosystem.

Effect of a natural solution on gastrointestinal parasitism modulation in heifers

M. HALGRAIN, S. JULLIAND, E. COUDERT, S. POINT, A. EUZENOT, T. CHALVON-DEMERSAY AND C. OMPHALIUS maeva.halgrain@roullier.com

Thank you!

