Living labs and demonstration farms: approaches to improve the sustainability of livestock farming systems globally

A session organised by:

EAAP's Livestock Farming Systems study commission

The <u>European network of living labs</u> (ENoLL) defines them as "user-centred, open innovation ecosystems based on systematic user co-creation approach, integrating research and innovation processes in real life communities and settings".

Living labs are initiatives in which experimentation is conducted on real farms, in specific territorial and community contexts, with farmers and other actors involved from the beginning as equal partners in proposing ideas, testing them, improving them and promoting them further.

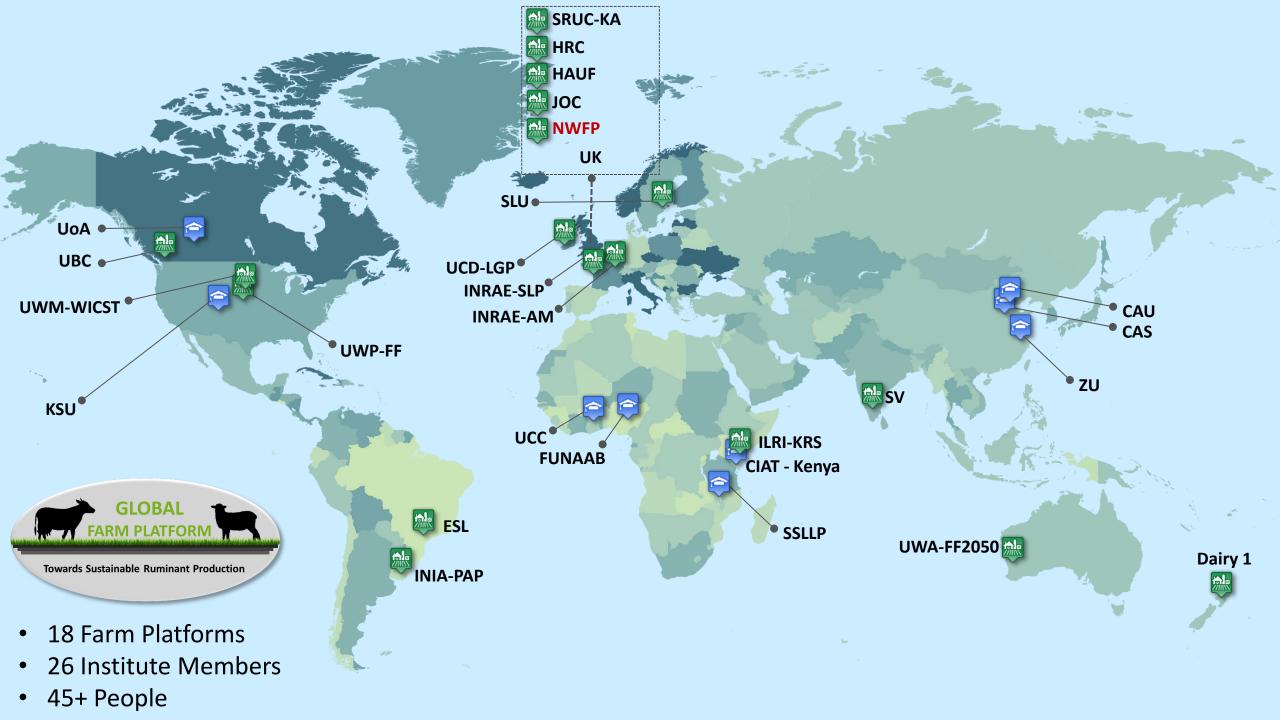
Demonstration farms, as described in the context of AgriDemo-F2F, are integral components of on-farm demonstration activities aimed at enriching farmer-to-farmer learning. These farms serve as focal points for showcasing diverse agricultural practices, technologies, and techniques. They distinguish between commercial farms and those affiliated with research institutions, universities, or private companies.

Living labs and demonstration farms: approaches to improve the sustainability of livestock farming systems globally

	Theatre Session 94 Book of Abstracts	page
14:00	Innovative approaches to assessing sustainability: A case study of sheep and beef systems at North Wyke Farm Platform <i>invited M. J. Rivero, M. R. Lee</i>	1007
14:30	Choreoraphed interactions with cows on a demonstration farm to rethinking livestock subjectivity and Human-animal collaborations M. F. De Torrez, A. Farruggia, L. Daranlot, S. Mouret, P. Roux, M. Prieur, C. Sébastien	1007
14:45	Future sustainable grazing systems at the UCD Lyons Farm Long Term Grazing Platform T. Boland, H. Sheridan, F. Monahan, P. Murphy, Z. C. Mckay, O. Schmidt, F. Godwin, A. Evans, A. Kelly	1008
15:00	Impact of temperature on milk yield: a multiyear analysis from Harper Adams University Future Farm J. Onyango, K. Robinson, E. Harris, M. Lee	1008
15:15	Living labs concept towards GHG emissions reduction targets, growing market access and creating industry value in Australia <i>P. Vercoe, Z. Durmic, B. Hayes</i>	1009
15:30	A grazing living lab in Northern Sweden a case study M. Hetta, J. Chagas, H. Lindgren	1009

15:45	Coffee Break	
16:15	Katanning Research Farm Demonstration of Carbon Neutral by 2030 and Natural Capital Accounting M. Curnow, J. Hardy, D. Devos	1010
16:30	The living lab approach in the ecological transition of livestock farming: the case of the Abruzzo mountains F. Di lacovo, L. Forzoni, S. Righi, C. Vincenzina, F. Riccioli, M. Moretti	1010
16:45	Living labs for assessing the overall sustainability of livestock systems through Life Cycle Assessment - SOLSTICE M. Birolo, M. Petracci, N. Lacetera, M. Marconi, F. Di Iacovo, F. Bonavolontà, M. T. Verde, G. Provolo, A. Cartoni Mancinelli, E. Sturaro	1011
17:00	INnovative Tools for Assessment and Authentication of chicken meat, beef and dairy products' QualiTies: a living lab approach R. C. Eppenstein, C. Berri, D. Berry, A. Cartoni Mancinelli, C. Couzy, C. Laithier, F. Leiber, B. Martin, E. Sturaro	1011
17:15	The "Cheese Valley" Initiative: co-design innovations in the Pecorino Toscano DOP Value Chain M. Re, S. Burbi, P. Barberi, M. Mele, A. Mantino	1012
17:30	Co-designing livestock-based circular agri-food systems in developing countries rural areas: The CLiMiT living lab approach T. Teixeira Da Silva Siqueira, J. M. Sadaillan, M. Feillet, M. Vigne, A. Benoist, M. Miralles-Bruneau, J. Vuattoux, M. Allix, P. Yoan, T. Donnah Razafinarivo, L. Rasolofo Irintsoa, M. Hanitriniaina Razafimahatratra, A. Barimalala, G. Parizet, J. Vayssières	1012
17:45	LivingLab - Effluents and coproducts of the livestock activity O. Moreira, I. Rehan, R. Fragoso, H. Trindade, V. Fitas Da Cruz, D. Fangueiro, E. Duarte	1013

Innovative approaches to assessing sustainability: A case study of sheep and beef systems at the North Wyke Farm Platform


Jordana Rivero*, Micheal RF Lee

Rothamsted Research, Harper Adams University

*Chair of the Global Farm Platform

Towards Sustainable Ruminant Production

www.globalfarmplatform.org

Steps to sustainable livestock

35 Workshops, 15+ Projects, £3M+ Value Grants

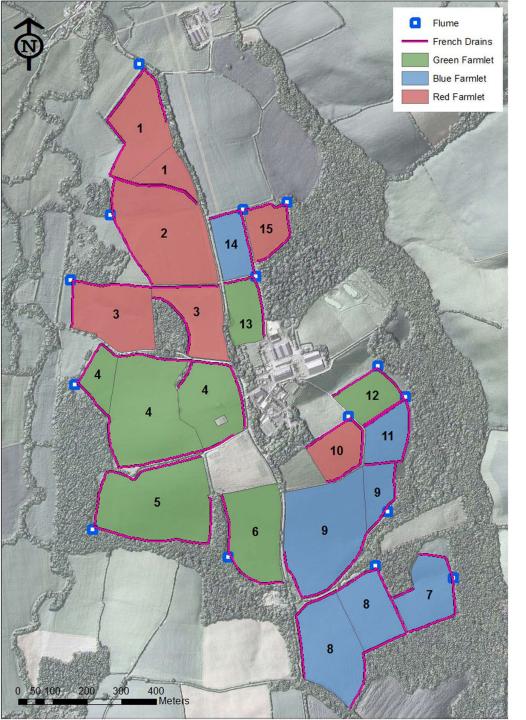
CSIRO PUBLISHING

Reproduction, Fertility and Development, 2021, 33. 1-19 https://doi.org/10.1071/RD20205

> Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms

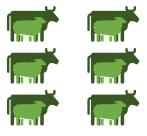
M. Jordana Rivero^A, Nicolas Lopez-Villalobos^B, Alex Evans^C, Alexandre Berndt^D, Andrew Cartmill^E, Andrew L. Neal^A, Ann McLaren^F, Anne Farruggia G, Catherine Mignolet H, Dave Chadwick David Styles L, Davy McCracken^F, Dennis Busch^E, Graeme B. Martin^J, Hannah Fleming^A, Helen Sheridan^C, James Gibbons¹, Lutz Merbold^K, Mark Eisler^L, Nicola Lambe^F, Pablo Rovira^M, Paul Harris^A, Paul Murphy^C, Philip E. Vercoe^J, Prysor Williams^J, Rui Machado^D, Taro Takahashi^{A,L}, Thomas Puech^H, Tommy Boland^C, Walter Ayala^M and Michael R. F. Lee^{A,L,N}

Rivero et al, Animal Frontiers 2021


Perspectives

Taking the steps toward sustainable livestock: our multidisciplinary global farm platform journey

M. Jordana Rivero, Alex C. O. Evans, Alexandre Berndt, Andrew Cartmill, Andrew Dowsey, Anne Farruggia, ** Catherine Mignolet, ** Daniel Enriquez-Hidalgo, ** Dave Chadwick, ** Davy I. McCracken, IIII Dennis Busch, Fabiana Pereyra, SGraeme B. Martin, Gregg R. Sanford, *** Helen Sheridan, I lain Wright, I Laurent Brunet, Mark C. Eisler, Nicolas Lopez-Villalobos, Pablo Rovira, \$\$ Paul Harris, Paul Murphy, A. Prysor Williams, Randall D. Jackson, *** Rui Machado, || Suraj P.T., | Thomas Puech, ** Tommy M. Boland, * Walter Ayala, ** and Michael R.F. Lee***


Sustainable Farming Systems

The North Wyke Farm Platform

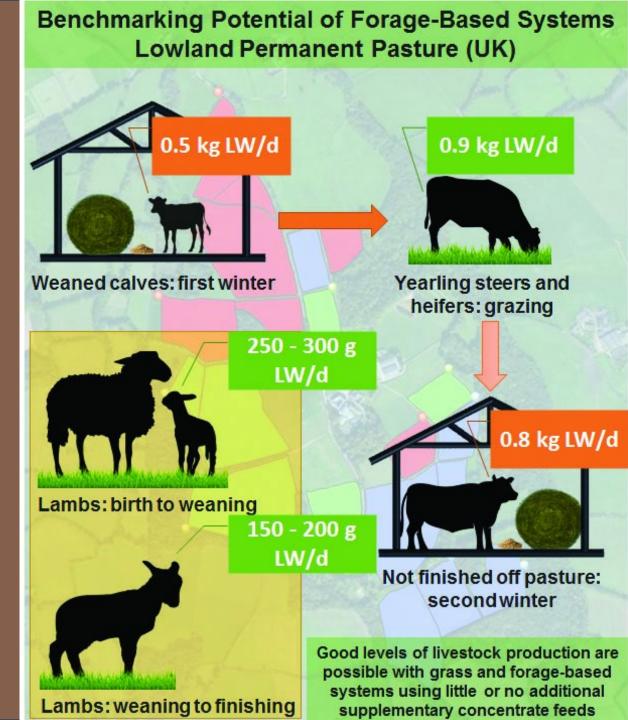
2019-2012 2013 2014 2015 2018 2016

- ✓ All data collected are publicly available at the NWFP Data Portal
- ✓ All papers are Open Access

Blue Farmlet Red Farmlet

Objective:

This abstract explores into a series of studies conducted at the North Wyke Farm Platform (NWFP, Devon, UK), spanning from 2018 to 2023, offering valuable insights into the sustainability of ruminant (sheep and beef) livestock systems.



Article

Livestock Performance for Sheep and Cattle Grazing Lowland Permanent Pasture: Benchmarking Potential of Forage-Based Systems

Robert J. Orr ¹, Bruce A. Griffith ¹, M. Jordana Rivero ^{1,*} and Michael R. F. Lee ^{1,2}

It provides practical recommendations for stocking rates, live weight gains in different seasons and herbage dry matter production, emphasising the potential of grass and foragebased systems with minimal supplementary feeding for sustainable livestock production.

Animal (2018), 12:8, pp 1766–1776 © The Animal Consortium 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/s1751731118000502

Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems

T. Takahashi^{1,2†}, P. Harris¹, M. S. A. Blackwell¹, L. M. Cardenas¹, A. L. Collins¹, J. A. J. Dungait¹, J. M. B. Hawkins¹, T. H. Misselbrook¹, G. A. McAuliffe^{1,2}, J. N. McFadzean^{1,3}, P. J. Murray¹, R. J. Orr¹, M. J. Rivero¹, L. Wu¹ and M. R. F. Lee^{1,2}

Table 3 Correlation matrix between economic, environmental and ecological variables

	Environmental/ecological indicators							Managerial decisions			Economic performance			
	SOC	HET	ВОТ	WAT	TIN	SED	CWC	CWS	CW	SIL	LGC	LGS	LG	
SOC	1													
HET	0.131	1												
BOT	-0.306	-0.342	1											
WAT	-0.383	0.097	-0.111	1										
TIN	0.059	0.059	0.231	0.517	1									
SED	-0.535	0.159	0.142	0.400	0.056	1								
CWC	0.077	0.588	0.184	0.042	0.245	0.075	1							
CWS	0.434	-0.650	0.326	-0.502	-0.311	-0.303	-0.431	1						
CW	0.476	-0.048	0.603	-0.427	-0.057	-0.210	0.545	0.522	1					
SIL	0.047	0.125	-0.282	-0.422	-0.104	0.113	-0.454	-0.162	-0.524	1				
LGC	-0.074	0.676	0.111	0.175	0.380	0.194	0.907	-0.671	0.234	-0.397	1			
LGS	0.275	-0.692	0.228	-0.342	-0.330	-0.104	-0.589	0.910	0.288	0.176	-0.820	1		
LG	0.376	-0.469	0.558	-0.387	-0.167	0.020	-0.077	0.829	0.697	-0.082	-0.363	0.830	1	

SOC = soil organic carbon; HET = SOC heterogeneity; BOT = botanical β-diversity; WAT = water discharge; TIN = TIN discharge; SED = sediment discharge; CWC = cumulative weight (cattle); CWS = cumulative weight (sheep); CW = cumulative weight; SIL = silage production; LWC = liveweight gain (cattle); LWS = liveweight gain (sheep); LG = liveweight gain.

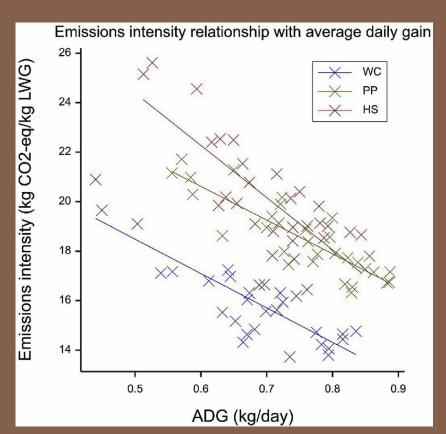
This work utilised the platform's rich datasets to propose an innovative information-driven approach to assess economic-environmental trade-offs within pasture-based cattle and sheep production systems.

... environmental performances are positively correlated with economic profitability with a systematic interaction between soil health, biodiversity, and livestock grazing.

Journal of Cleaner Production 171 (2018) 1672-1680

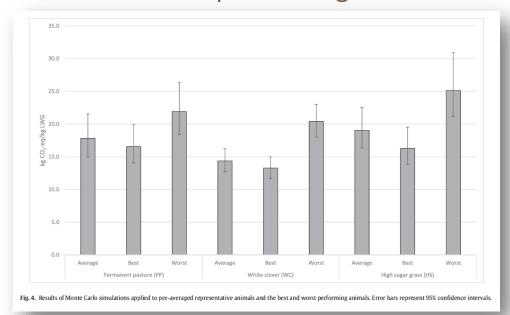
Contents lists available at ScienceDirect

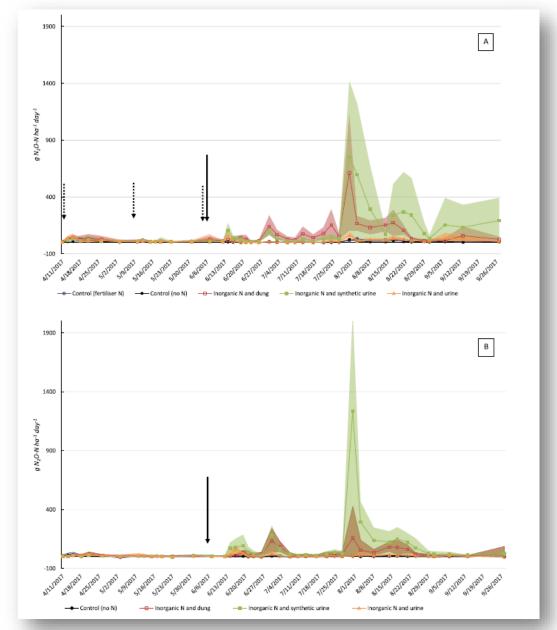
Journal of Cleaner Production



journal homepage: www.elsevier.com/locate/jclepro

Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems


G.A. McAuliffe ^{a, b}, T. Takahashi ^{a, b, *}, R.J. Orr ^a, P. Harris ^a, M.R.F. Lee ^{a, b}



Relationship between global warming potential (GWP) and average daily gains (ADG) under each system. PP: permanent pasture; WC: white clover/high sugar grass mix; HS: high sugar grass monoculture.

This novel life cycle assessment (LCA) study explored the impact of individual animal and seasonal variabilities on livestock-originated emissions intensity.

- ✓ Potential underestimation of environmental impacts when using representative animal approaches
- ✓ Great potential to reduce emissions by removing the bottom 10% of performing animals

Daily N2O-N fluxes for each farmlet. A: permanent pasture (PP); B: white clover/high sugar grass mix (WC); C: High sugar grass monoculture (HS). Treatments were applied on 6th June (see large black arrow). Smaller dotted arrows denote inorganic fertiliser application (40 kg N/ha/application). Shaded areas signify standard deviation.

Agriculture, Ecosystems and Environment 300 (2020) 106978

Contents lists available at ScienceDirect

Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

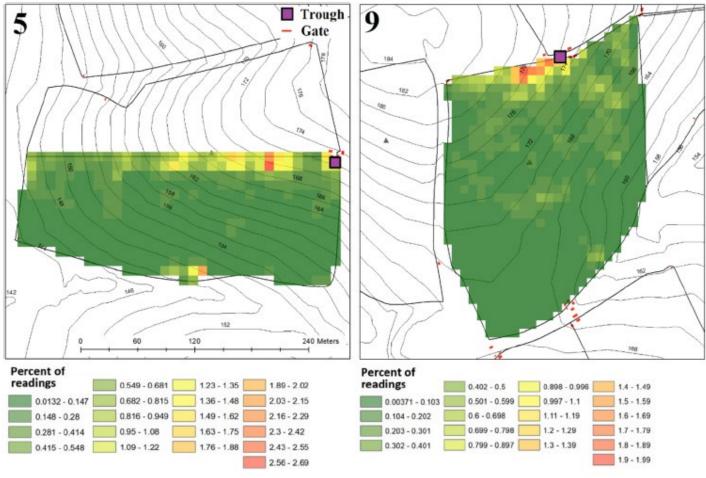
Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems

G.A. McAuliffe^a, M. López-Aizpún^{a,*}, M.S.A. Blackwell^a, A. Castellano-Hinojosa^b, T. Darch^a, J. Evans^a, C. Horrocks^a, K. Le Cocq^a, T. Takahashi^{a,c}, P. Harris^a, M.R.F Lee^{a,c}, L. Cardenas^a

This work on N₂O emissions challenged traditional methods by considering different pasture types.

✓ It highlights that N₂O emission factors needed greater refinement to better predict across contrasting grassland systems.

SEDIMENTS, SEC 3 • HILLSLOPE AND RIVER BASIN SEDIMENT DYNAMICS • RESEARCH ARTICLE



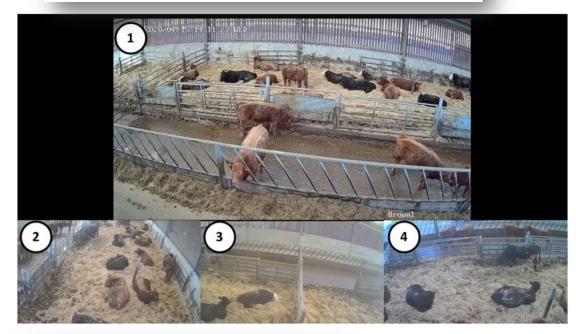
Does cattle and sheep grazing under best management significantly elevate sediment losses? Evidence from the North Wyke Farm Platform, UK

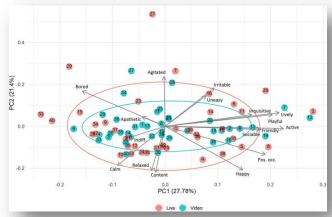
S. Pulley 1 D · L. M. Cardenas 1 · P. Grau 1 · S. Mullan 2 · M. J. Rivero 1 · A. L. Collins 1

This study harnesses the state-ofthe art capability to monitor hydrological aspects of the NWFP.

It investigated the relationship between livestock stocking rates and sediment losses, providing insights into the effectiveness of mitigation options

The percentage of cattle GPS readings recorded in each 10 m× 10mcell of catchments 5 and 9

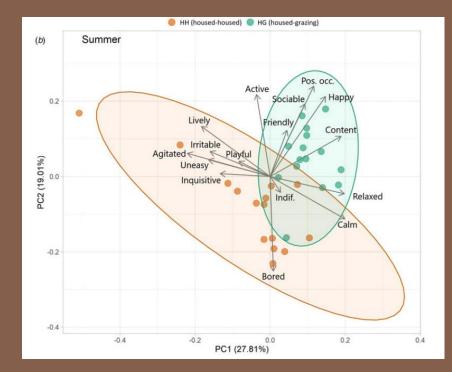



ORIGINAL RESEARCH published: 16 March 2022 doi: 10.3389/fuete 2022.83223

V-QBA vs. QBA—How Do Video and Live Analysis Compare for Qualitative Behaviour Assessment?

A. S. Cooke^{1*}, S. M. Mullan², C. Morten¹, J. Hockenhull³, M. R. F. Lee⁴, L. M. Cardenas¹ and M. J. Rivero^{1*}

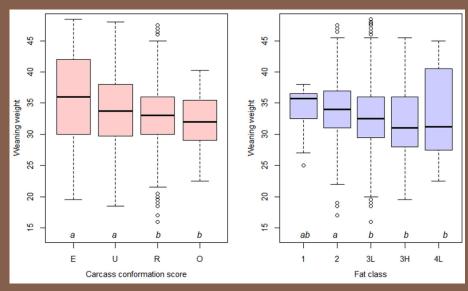
PCA analysis QBA results from live and video assessments, determined by 17 terms.


The Journal of Agricultural Science

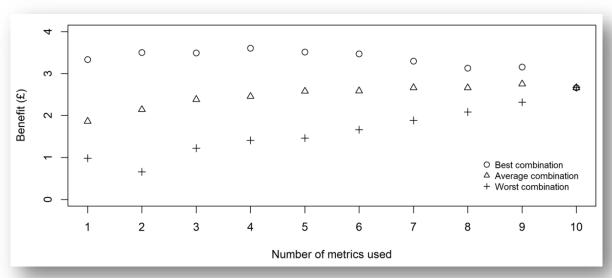
cambridge.org/ags


Animal Research Paper

Comparison of the welfare of beef cattle in housed and grazing systems: hormones, health and behaviour


Andrew S. Cooke^{1,2} , Siobhan Mullan^{3,4}, Charlie Morten², Joanna Hockenhull⁴, Phil Le-Grice², Kate Le Cocq^{2,5}, Michael R. F. Lee^{2,4,5}, Laura M. Cardenas² and M. Jordana Rivero²

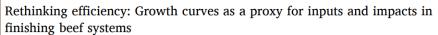
Biplots of PCA results from winter (a) and summer (b) QBA results, showing distribution of data for each herd. Ellipses represent 95% confidence


This work assessed the feasibility of using earlylife liveweight to predict carcass quality in offering a practical tool for predicting carcass quality early in the production cycle.

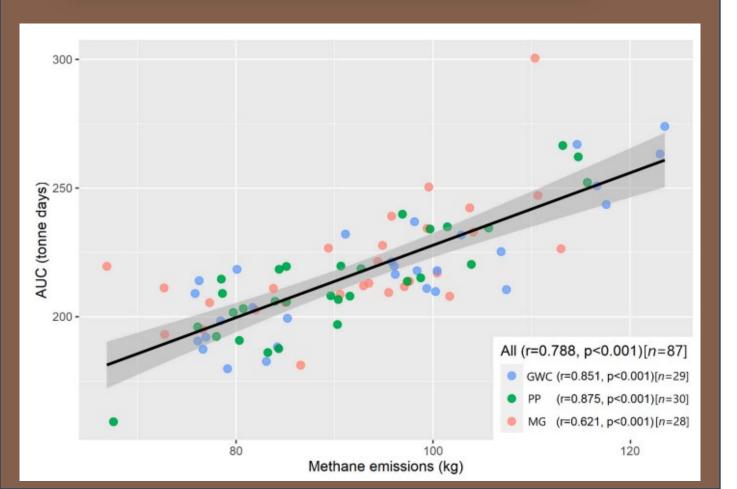
Conditional boxplots for lamb weaning weight. A significant difference in weaning weight (kg) was observed between different carcass conformation score groups (p < .001) (left) and between different fat class groups (p < .001) (right) at slaughter. Groups with the same letter are not significantly different with each other (p > .05) based on Tukey's honestly significant difference (HSD) test.

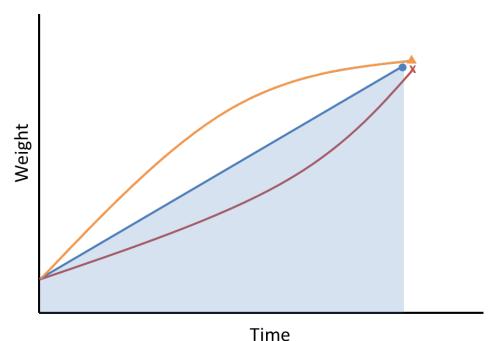
This study proposed a novel framework for quantifying the information value of industry-recommended Key Performance Indicators.

Combined gross information value of multiple predictors. A considerable variability in information value is observed even when the same number of predictors is used, demonstrating the importance of selecting key performance indicators based on quantitative evidence.


Contents lists available at ScienceDirect

Journal of Environmental Management


ournal homepage: www.elsevier.com/locate/jenvman

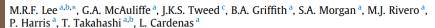

Research article

Andrew S. Cooke a,b,*, Phil Le-Grice a, Graham A. McAuliffe a, Michael R.F. Lee a,c,d,

Working with cattle datasets, this study introduced the Area Under the (growth) Curve (AUC) as a metric for assessing efficiency in beef systems challenging the industry standard of liveweight gain per day.

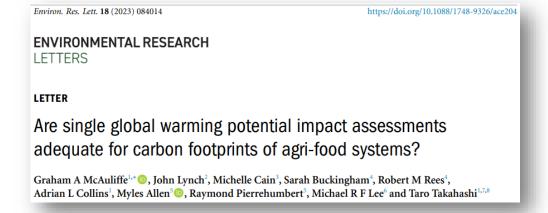
Scatterplot showing correlation between AUC (tonne days) and total methane emissions (kg). Each point represents one animal. Farmlets are differentiated by point colour. Shading represents 99% confidence interval.

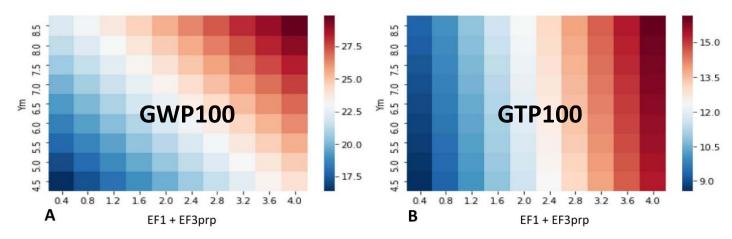
Animal 15 (2021) 100257


Contents lists available at ScienceDirect

Animal

The international journal of animal biosciences


Nutritional value of suckler beef from temperate pasture systems



The nutritional value of a food item should be used in defining its environmental cost (e.g. carbon footprint) to make fair comparisons across different food groups (e.g. protein sources).

✓ Pasture-based beef has a nutrient indexed carbon footprint of between 0.19 and 0.23 Kg CO₂eq/1% RDI of key nutrients.

Comparing different climate impact assessments... This work emphasises the **importance of considering dynamic metrics**, such as GWP*, for a **more accurate representation** of the temporal evolution of temperature change.

Heatmaps of all 90 scenarios described in section 2.2. Please note that the x-axis only displays EF3prp emission factors (EF); however, EF1 ranges are also included (0.2% to 2.0% in steps of 0.2%) to represent total N applied and deposited on pasture but are not displayed for simplicity. Figure 2(A) displays impacts under GWP100 whilst figure 2(B) reports impacts under GTP100.

Journal of Animal and Feed Sciences, 32, 4, 2023, 427–437, https://doi.org/10.22358/jafs/166079/2023 The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna

Comparison of lipid profiles in the faeces of beef cattle fed three common temperate grass silage diets and their relevance to dietary composition

M. Elayadeth-Meethal^{1,2,*}, M. Jordana Rivero², A. Mead³, M.R.F. Lee^{1,4} and T.H. Misselbrook¹

Animal 17 (2023) 100726

Contents lists available at ScienceDirect

Animal

Performance and enteric methane emissions from housed beef cattle fed silage produced on pastures with different forage profiles

P. Meo-Filho a,*, J. Hood b, M.R.F. Lee a,1, H. Fleming a, M.E. Meethal a,2, T. Misselbrook a

Parasitology

The latest FAD – Faecal antibody detection in cattle. Protocol and results from three UK beef farms naturally infected with gastrointestinal nematodes

Research Article

cambridge.org/par

Cite this article: Cooke AS, Watt KA, Morgan

A. S. Cooke^{1,2}, K. A. Watt³, E. R. Morgan^{2,4} and J. A. J. Dungait¹

natureresearch

Corrected: Author Correction

Insights into *Pasteurellaceae* carriage dynamics in the nasal passages of healthy beef calves

A. C. Thomas (1,2,4, M. Bailey¹, M. R. F. Lee^{1,2}, A. Mead³, B. Morales-Aza^{4,5}, R. Reynolds (6, F. Vipond⁷, A. Finn^{4,5,6} & M. C. Eisler¹

Living labs and demonstration farms: approaches to improve the sustainability of livestock farming systems globally

A session organised by:

EAAP's Livestock Farming Systems study commission