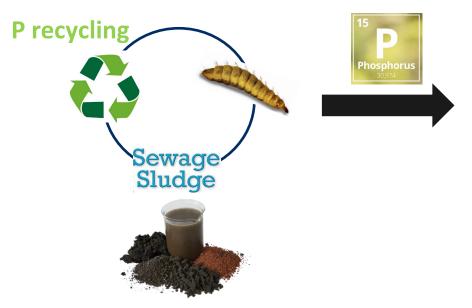
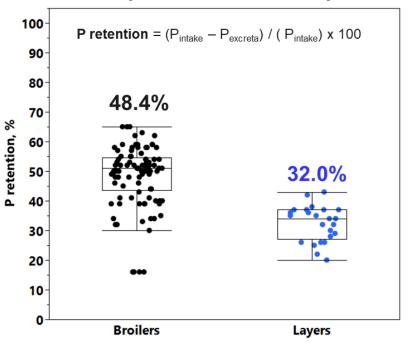


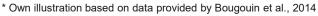
Nutrient intake, growth performance, blood metabolites and bone properties of broilers fed a ration containing mineral-enriched black soldier fly larvae

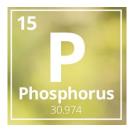
M. M. Seyedalmoosavi*, <u>G. Daş</u>, M. Mielenz, C. C. Metges

Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

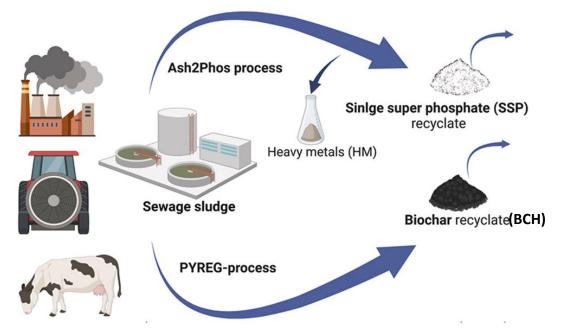

*Present address: Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany




"Critical raw material" used in agriculture


- 90% of P derived from phosphate rock is used as fertilizer or livestock feed¹
- Global rock phosphate resources are depleting
- Excessive use of P → environmental concerns²
- To lower the P-losses through organic waste, P recycling is essential³
- Can mineral recycling technology and black soldier fly larvae help overcome these challenges?

Meta-analysis of P retention by chickens*


⁽¹⁾ Brunner, 2010.

⁽²⁾ Liu et al., 2008.

⁽³⁾ Bergfeldt et al., 2018.

New recycling technologies

Ash2®Phos process: recycling of sewage sludge by incineration¹

PYREG®-process: pyrolysis of sewage sludge²

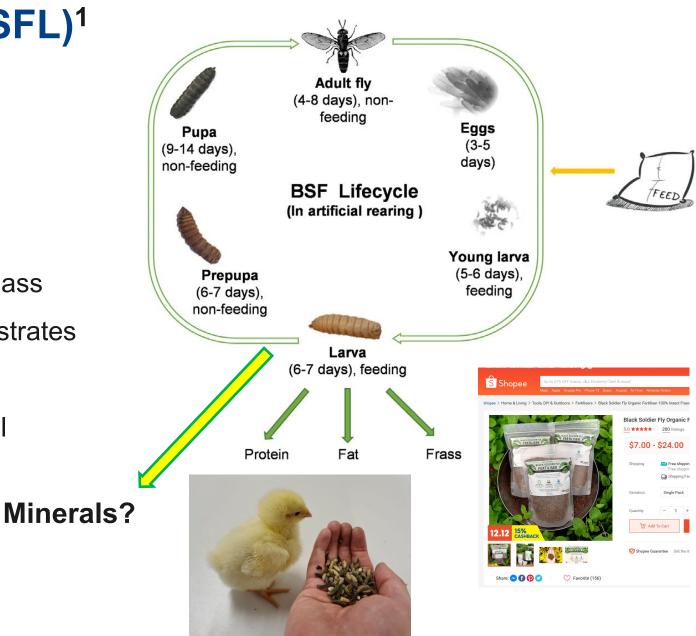
- An efficient recycling of minerals is possible
- Concerns about heavy metals in sewage sludge recyclates

	Recyclates		
	ВСН	SSP	
Macrominerals, g/kg DM			
Ca	52.4	208.4	
P	65.9	88.8	
Mg	7.3	1.8	
Na	2.4	14.5	
K	4.2	2.1	
Heavy metals, mg/kg DM			
Mn	490.0	59.5	
Fe	141,064	430	
Zn	462.9	8.9	
Cu	1,643	23.4	
As	3.0	1.3	
Cd	< 0.02	< 0.02	
Pb	87.0	1.9	
Hg	< 0.02	< 0.02	

1.	4١	Caban	-1 -1	2010	International	Castilia as	Casiat
(I)	Conen	et al.,	2019,	International	Fertilizer	Societ

⁽²⁾ Fesharaki and Rath, 2018, Verkohlungsanlage Pyreg. European Patent Office Patent no. EP 3 358 253 A1

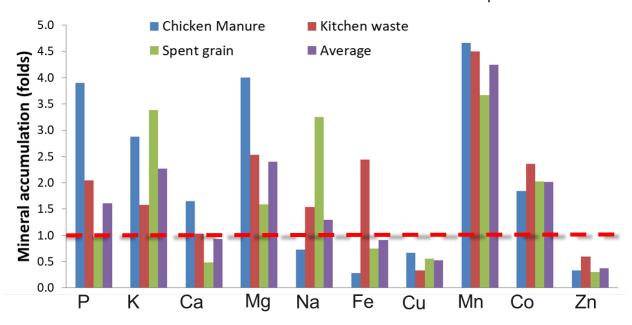
Larvae of black soldier fly (BSFL)¹



Harvested larvae

- Recycle and upgrade low-grade organic biomass
- Can grow on a large spectrum of feeding substrates
- Classical intention of BSFL rearing:
 - N-recycling: alternative to soya and fishmeal
 - Frass (faeces + residues) as plant-fertilizer
- Suitable for mineral recycling?

(1) Seyedalmoosavi et al., 2022. https://doi.org/10.1186/s40104-022-00682-7

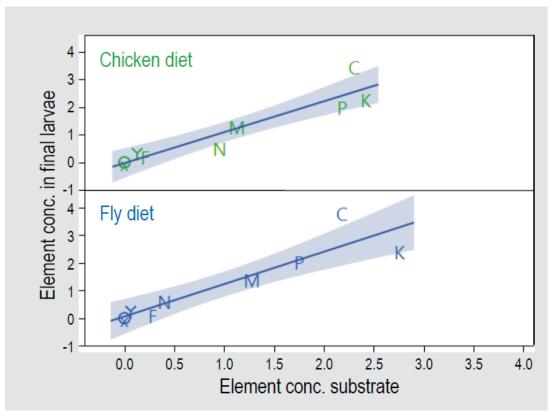


BSFL accumulate certain minerals

>1 = accumulation

1 = no accumulation

<1 = Depletion



Modified after Shumo et al., 2019, Scientific Reports, 9(1), 1-13.

Each letter-symbol	
represents the relationship	
between average	
concentrations of a given	
element in the substrate and	
in the final larvae.	

 Element concentrations 							
shown on both axes are on							
a log-scale, i.e.							
[ln (g + 1) / kg dry matter)].							

Element	Symbol
Calcium	С
Cadmium	х
Iron	F
Potassium	K
Magnesium	М
Manganese	Y
Sodium	N
Phosphorus	Р
Lead	0

Das et al., 2023. *Journal of Insects as Food and Feed* https://doi.org/10.3920/JIFF2023.0021

Overall hypothesis and objectives

ĖΡ

Hypothesis

✓ BSFL can accumulate minerals from sewage sludge recylates and mineral-enriched BSFL can be fed to broilers

Objectives

- ✓ How much unprocessed BSFL can be fed to broilers?
- ✓ To what extend BSFL can accumulate minerals from sewage sludge recylates?
- ✓ Impact of mineral-enriched BSFL on broiler performance, blood metabolites and bone properties

Experiments

Experiment 1

Experiment 2

Experiment 3

To what extent whole BSFL can be included in broiler diets?

How much recycled P and minerals can BSFL accumulate from different sources?

What are the effects of feeding broilers with mineral-enriched BSFL?

Poultry Science
Volume 101, Issue 12, December 2022, 102202

Effects of increasing levels of whole Black Soldier

Fly (Hermetia illucens) larvae in broiler rations on

acceptance, nutrient and energy intakes and

M.M. Seyedalmoosavi *, M. Mielenz *, S. Görs *, P. Wolf †, G. Daş * △ △, C.C. Metges *



Contents lists available at ScienceDirect

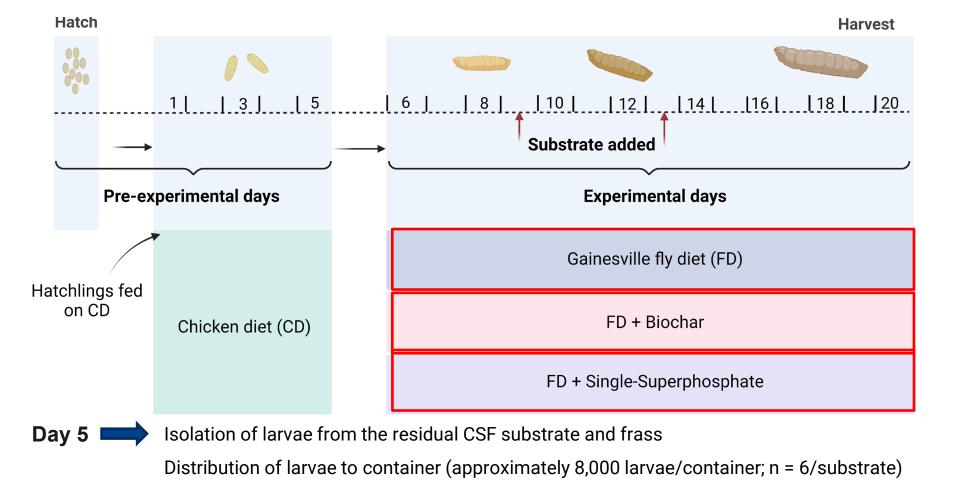
Journal of Environmental Management

Upcycling of recycled minerals from sewage sludge through black soldier fly larvae (Hermetia illucens): Impact on growth and mineral accumulation

utilization, and growth performance of broilers

Journal of Insects as Food and Feed, 2023; 9(5): 583-598

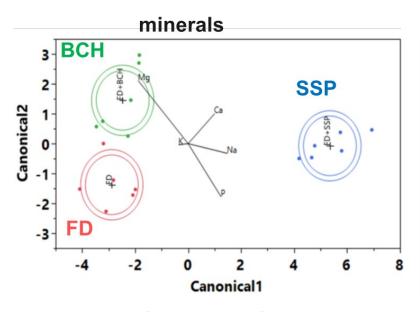
Lipid metabolism, fatty acid composition and meat quality in broilers supplemented with increasing levels of defrosted black soldier fly larvae

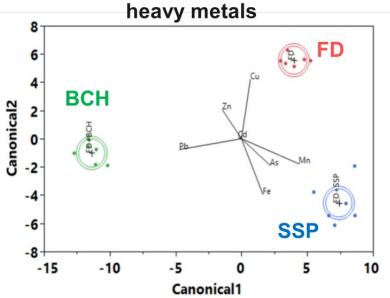

M.M. Seyedalmoosavi¹, D. Dannenberger², R. Pfuhl², S. Görs¹, M. Mielenz¹, S. Maak², P. Wolf³, G. Daş¹ o and C.C. Metges¹

BSFL feeding experiment with sewage sludge recylates (Exp-2)

Random allocation of larvae to experimental diets

Randomization of boxes on racks


Differentiation of macrominerals and heavy metal patterns in BSFL


	Feeding	substrates		P-v	values , \leq	
	FD	FD + BCH	FD + SSP	SE	T	В
Macrominer	als, g/kg DM					
Ca	45.77 ^c	53.24 ^b	64.59 ^a	1.22	0.001	0.022
P	7.14 ^b	7.24 ^b	10.89 ^a	0.39	0.001	0.035
Mg	3.31^{b}	3.63 ^{ab}	3.96 ^a	0.12	0.005	0.015
Na	0.94 ^b	0.94 ^b	1.27 ^a	0.03	0.001	0.212
K	$10.89^{\rm b}$	$10.01^{\rm b}$	14.46 ^a	0.74	0.005	0.071
Heavy metal	s, mg/kg D M			_		1
Mn*	285	304	303	7.46	0.167	0.108
Fe	150 ^b	557 ^a	339 ^{ab}	74.4	0.006	0.248
Zn	95.8 [†]	107.4^{\dagger}	98.5	3.6	0.087	0.047
Cu	9.92^{\dagger}	12.22^{\dagger}	10.14	0.67	0.052	0.085
As	0.047^{b}	0.066 ^b	0.115 ^a	0.006	0.001	0.340
Cd*	0.63 ^b	0.77 ^a	0.74 ^{ab}	0.037	0.045	0.147
Pb	0.23 ^c	1.16 ^a	0.54 ^b	0.050	0.001	0.201
Hg	0.000	0.000	0.001	-	-	-

^{*} Above EU limits for livestock feed

Color codes

Green : desirable Red : undesirable

Broiler feeding experiment with mineral enriched BSFL (Exp-3)

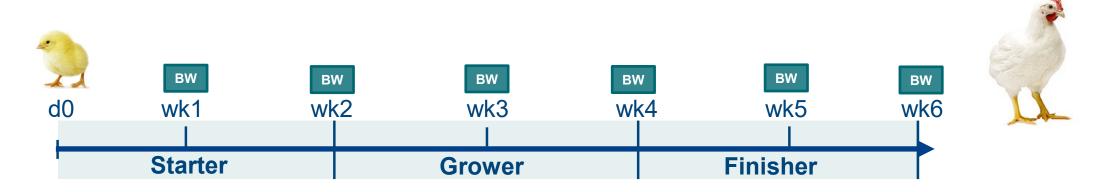
15% of CON feed intake as BSFL

no BSFL; ad libitum

feed

CON

CON +FD-BSFL (L-FD)


CON+BCH-BSFL (L-BCH)

CON+SSP-BSFL (L-SSP)

N = 80 birds (Ross 308)

N = 20 birds/group (6 pens / group)

Pen based measurements

Nutrient intakes
Weekly body weight

Individual measurements

- Plasma
- Bone

Feed intake and growth performance of broilers fed mineral-enriched BSFL

	Dietary treatment groups ¹					P -values ² (\leq)		
	CON	L-FD	L-BCH	L-SSP	SE	G	W	$G \times W$
Intakes (g/wk)								
Feed	629	472	498	469	73.7	0.392	0.001	0.396
Larvae	_	91.9	91.8	91.8	_	_	_	_
Fresh matter	629	564	589	561	73.7	0.905	0.001	0.847
Dry matter	570	454	478	451	66.8	0.563	0.001	0.589
Growth performance								
Initial BW (g)	48.75	49.00	47.88	48.92	0.026	0.750	_	_
Average BW (g)	1011	779	809	780	176	0.750	0.001	0.621
CV of BW (%)	30.07	44.75	34.51	46.78	8.92	0.496	0.001	0.301
Feed conversion ratios								
FCR-1 (FMI/BWG)	1.87	2.26	2.15	2.47	0.320	0.618	0.201	0.668
FCR-2 (DMI/BWG)	1.67	1.79	1.74	1.92	0.220	0.884	0.070	0.599

Energy and nutrient conversion, and mineral and heavy metal intakes of broilers fed mineral-enriched BSFL

	Dietary treatment groups ¹		1	P-values² (s	≦)			
	CON	L-FD	L-BCH	L-SSP	SE	G	W	$G \times W$
Nutrient and energy intake								
Crude protein (g/wk)	145	121	127	119	16.12	0.669	0.001	0.643
Crude fat (g/wk)	26.43	25.80	26.59	24.03	26.43	0.916	0.001	0.547
Crude ash (g/wk)	46.59	38.94	41.60	39.85	6.01	0.806	0.001	0.796
ME(MJ/wk)	7.24	6.85	7.08	6.61	0.84	0.954	0.001	0.827
CP:ME intake ratio	20.04a	17.63 ^b	17.89 ^b	18.01 ^b	0.22	0.001	0.001	0.038
PCR (g CP/100 g BWG)	47.5	53.0	51.3	56.7	6.77	0.812	0.064	0.676
ECR (MJ ME/100 g BWG)	2.17	2.78	2.62	2.95	0.40	0.561	0.168	0.689
Mineral intake (g/wk)								
Ca	9.55	8.42	9.10	8.85	1.33	0.941	0.001	0.815
P	3.63	2.90	3.06	2.98	0.420	0.611	0.001	0.656
Mg	1.29	1.06	1.12	1.07	0.147	0.640	0.001	0.659
Na	1.04	0.81	0.85	0.81	0.132	0.579	0.001	0.531
K	6.36	5.04	5.30	5.10	0.698	0.521	0.001	0.543
Heavy metal intake (mg/wk)								
Mn	83.50	62.94	66.35	62.47	10.31	0.448	0.001	0.422
Fe	199	150	159	149	25.69	0.489	0.001	0.421
Zn	80.81	60.95	64.25	60.48	10.03	0.453	0.001	0.421
Cu	12.81	9.65	10.17	9.57	1.56	0.436	0.001	0.417
As	0.180	0.137	0.146	0.137	0.026	0.621	0.001	0.285
Cd	0.049	0.038	0.039	0.037	0.006	0.428	0.001	0.445
Pb	0.092	0.069	0.073	0.069	0.012	0.496	0.001	0.306

Plasma metabolites, enzymes and immunoglobulins in broilers fed mineral enriched BSFL

		P -value (\leq)				
	CON	L-FD	L-BCH	L-SSP	SE	Group
Metabolites						
Albumin (g/L)	12.41	12.37	12.20	13.07	0.347	0.270
Cholesterol (mmol/L)	3.00	3.33	3.26	3.29	0.177	0.492
Glucose (mmol/L)	13.92	14.27	14.40	14.13	0.271	0.596
NEFA (μ mol/L)	207.2	276.7	292.6	283.0	28.68	0.117
Triglyceride (mmol/L)	0.826	1.16^{+}	1.00	0.803^{\dagger}	0.108	0.057
Uric acid (µmol/L)	353.1	448.2	415.6	390.7	54.22	0.610
ALP(U/L)	1749	2943	3088	2839	550	0.261
P (mmol/L)	1.94^{a}	1.56 ^{ab}	1.42 ^b	1.63 ^{ab}	0.123	0.022
Ca (mmol/L)	$2.74^{\rm b}$	3.21 ^a	3.22^{a}	3.08 ^{ab}	0.129	0.026
Mg (mmol/L)	0.936	0.979	0.989	0.992	0.031	0.508
Immunoglobulins						
IgY (mg/mL)	1.79	1.30	1.33	1.42	0.163	0.107
IgM (mg/mL)	0.201	0.200	0.202	0.196	0.017	0.994
IgA (mg/mL)	0.224	0.220	0.209	0.253	0.021	0.464

Tibia characteristics and bone mineral status in broilers fed mineral enriched BSFL

		Dietary treat		P -value (\leq)		
	CON	L-FD	L-BCH	L-SSP	SE	Group
Diameter (cm)	0.907	0.792	0.887	0.883	0.055	0.462
Length (cm)	9.44	8.44	9.08	9.25	0.380	0.282
Weight (g)	11.33	9.14	10.19	11.26	1.18	0.511
Strength (N)	281.5	226.0	258.1	267.3	32.19	0.654
Ash (% DM)	52.49	49.02	50.64	47.94	1.82	0.324
P (in ash) (% DM)	18.59	18.50	18.40	17.83	0.542	0.739
Ca (in ash) (% DM)	36.34	36.89	34.01	34.23	2.19	0.728

Conclusion (Exp-3)

✓ 15% of CON feed intake can be provided broilers as whole BSFL

ĖΡ

- ✓ 15% mineral-enriched BSFL in broiler diets did not affect nutrient intakes, tibia statues and tibia mineral composition
- ✓ SSP recycled-mineral enriched whole BSFL may be included in broiler diets
 - √ (P and C replacement instead of supplementation?)

Caution

- ✓ Large within group variations
- ✓ Potential heavy metal accumulation in broiler meat was not investigated

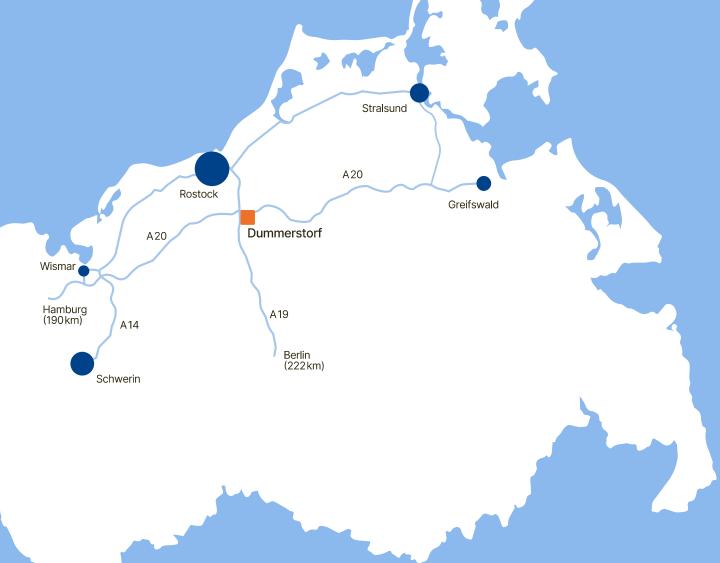
Growth, nutrient uptake, blood metabolites and bone properties in broilers consuming feed with mineral-enriched whole black soldier fly larvae

in Journal of Insects as Food and Feed

Autor:innen: M.M. Seyedalmoosavi , G. Daş , M. Mielenz, S. Maak , P. Wolf, und C.C. Metges

Online-Publikationsdatum: 14 Jun 2024

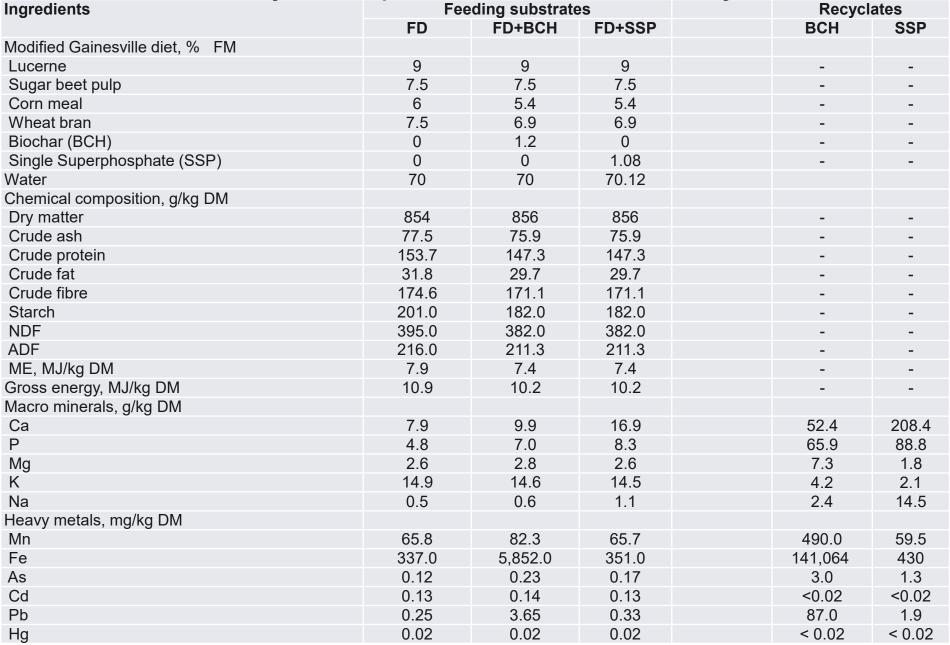
Acknowledgement



Research Institute for Farm Animal Biology

Dr. Solvig Görs Birgit Mielenz Astrid Schulz Kerstin Pilz Susanne Dwars Kirsten Kàrpàti This project was funded by the Leibniz ScienceCampus Phosphorus Research Rostock

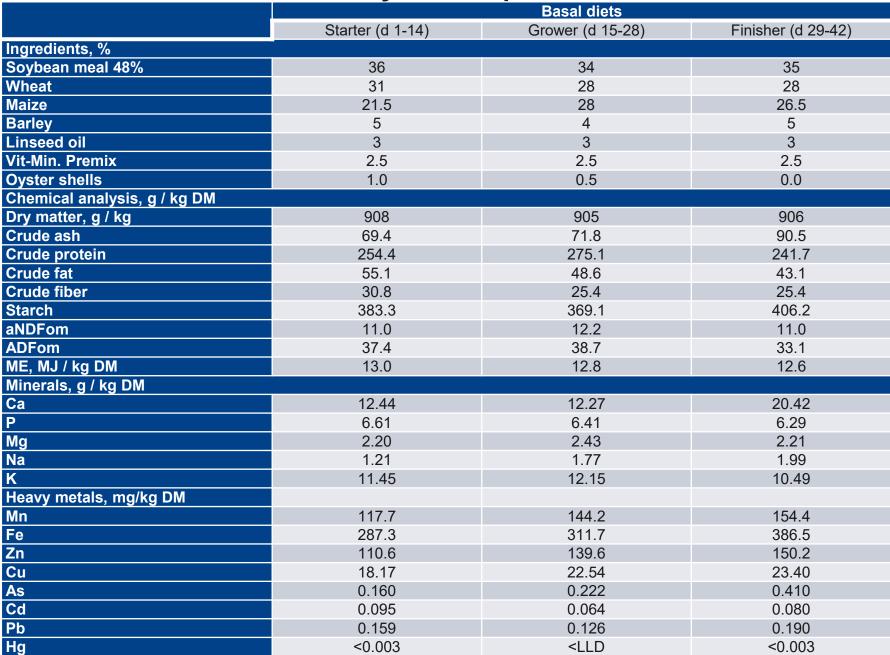
Thank you for your attention!


Research Institute for Farm Animal Biology Wilhelm-Stahl-Allee 2 18196 Dummerstorf, Germany

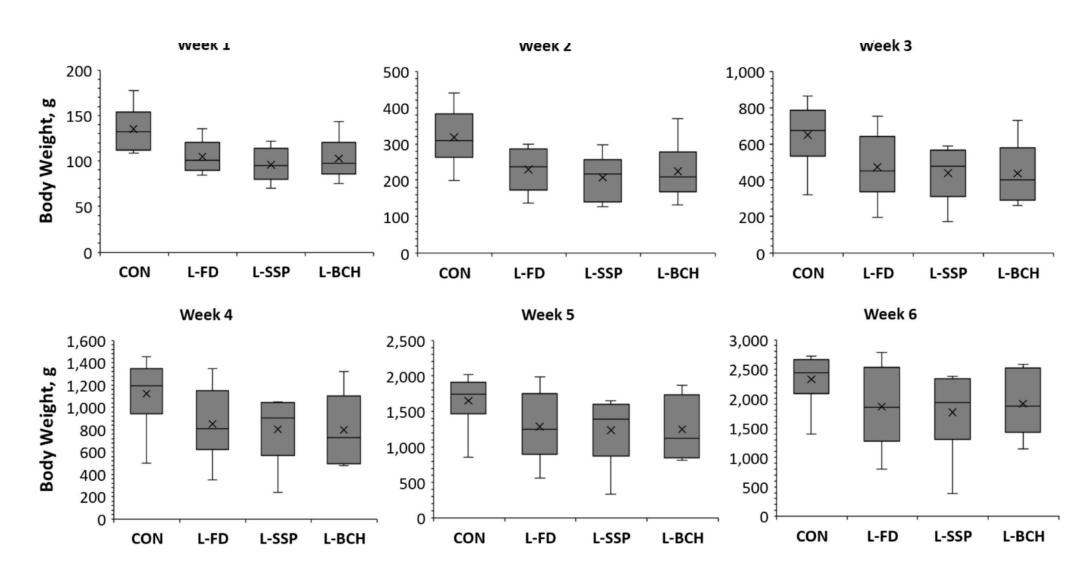
www.fbn-dummerstorf.de

gdas@fbn-dummerstorf.de

Chemical analysis of experimental substrates and recyclates


Exp- 2

Chemical analysis of experimental feed


Exp- 2

Body weight development in broilers fed mineral enriched BSFL

Background

- ✓ Growing human population requires the sustainable use of resources
- ✓ Food security treats; climate change, biodiversity loss, plant and animal diseases (1)
- ✓ Insects have a great potential to substitute conventional protein sources (2)
- ✓ BSFL meal in broiler diets without adverse effect on growth performance (3, 4)
- ✓ BSFL meal production requires expensive feed processing technology
- ✓ Instead of meal form, whole BSFL could be included in broiler diets (5, 6, 7)
- ✓ Diets containing whole larvae are highly interesting for poultry (5)

¹⁾ IPCC AR6, 2022

²⁾ Dörper et al., 2020. J. Insects as Food Feed.

³⁾ Cullere et al., 2016. Animal

⁴⁾ de Souza Vilela et al., 2021. Foods.

⁵⁾ Moula et al., 2018. Anim. Nutr.

⁶⁾ Ipema et al., 2020. Appl. Anim. Behav. Sci.

⁷⁾ Bellezza Oddon et al., 2021. J. Anim. Physiol. Anim.

Background

Positive effects of using insect in poultry diet

- ✓ Functional feed additive for poultry; chitin and antimicrobial peptides (1, 2)
- ✓ Improvement of growth performance, intake and efficiency (3)
- ✓ Microbial community improvement ⁽³⁾
- ✓ No detrimental effect on meat quality and sensory traits (4, 5)
- ✓ Animal behavior and welfare (6, 7)

- 1) Gasco et al., 2020. J Insects as Food Feed.
- 2) Józefiak and Engberg, 2017. J Anim Feed Sci.
- 3) Kierończyk et al., 2022. Anim. Nutr.
- 4) De Souza Vilela et al., 2021. Foods .
- 5) Popova et al., 2020. J Insects as Food Feed.
- 6) Ipema et al., 2020. Sci. Rep.
- 7) Pichova et al., 2016. Appl. Anim. Behav. Sci.

Background

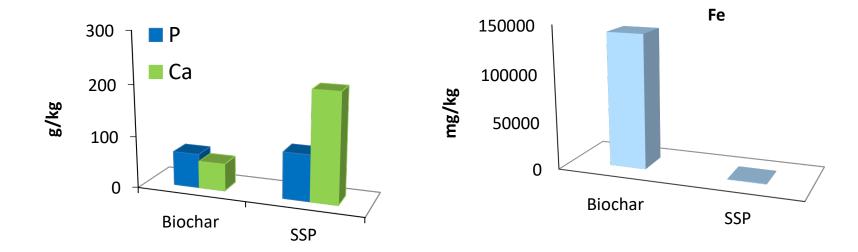
Potential risks associated with using BSFL as feed

✓ BSFL convert waste into valuable biomass to improve nutrient cycle (6)

✓ Restrictions on BSFL farming and use of BSFL as animal feed in the EU (6, 7)

✓ European legislation prohibited waste for feeding BSFL (8)

¹⁾ Lievens et al., 2021. J. Insects as Food Feed.


²⁾ Lalander and Vinnerås, 2022. J. Insects as Food Feed.

³⁾ European Commission, 2009.

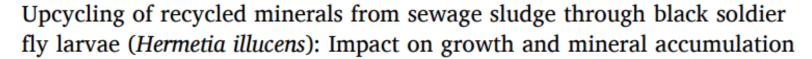
Recyclates

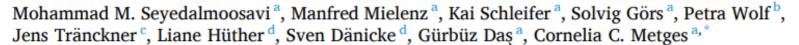
- ✓ **Single Superphosphate (SSP)** originated from the recycling of sewage sludge produced by incineration using the Ash2®Phos process ⁽¹⁾
- ✓ Biochar derived from pyrolysis of sewage sludge produced by the PYREG®-process (2)

⁽¹⁾ Cohen et al., 2019, International Fertilizer Society (30 May 2019).

⁽²⁾ Fesharaki and Rath, 2018, Verkohlungsanlage Pyreg. European Patent Office Patent no. EP 3 358 253 A1.

Publication

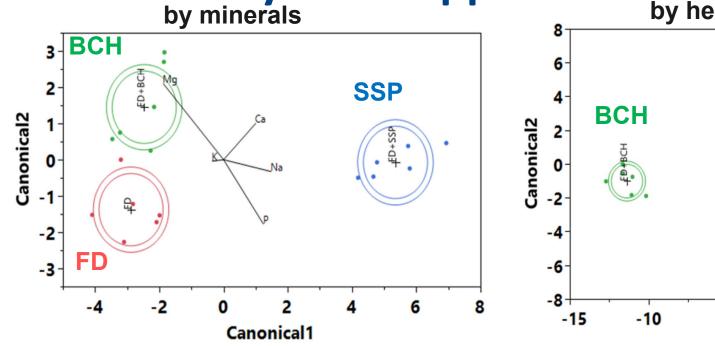

Contents lists available at ScienceDirect

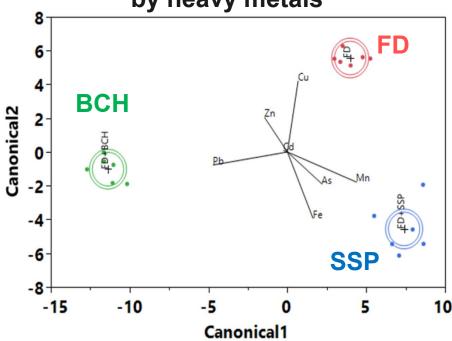

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

a Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany


b University of Rostock, Nutritional Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Rostock, Germany


^c University of Rostock, Water Management, Faculty of Agricultural and Environmental Sciences, Rostock, Germany

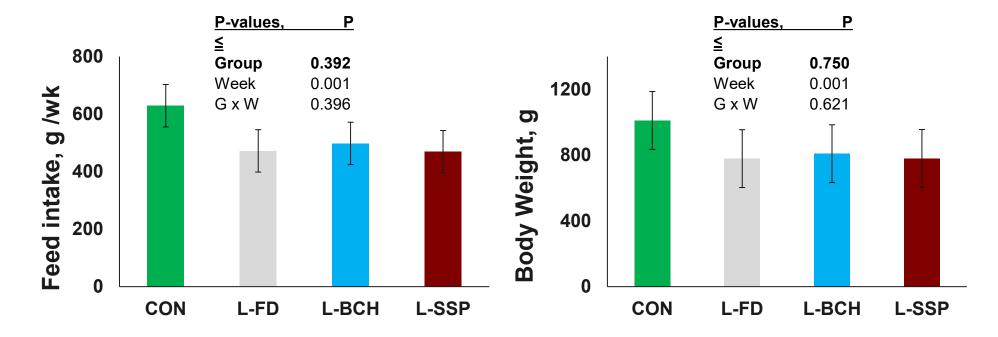
d Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany

Linear discriminant analysis for overall differentiation in

BSFL fed recyclate supplemented substrates by minerals by heavy metals

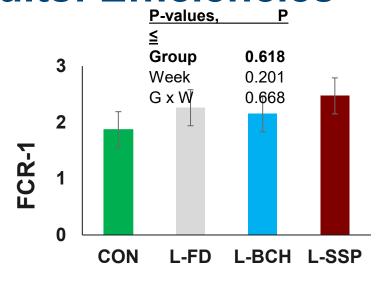
- SSP differentiated from FD mainly via P, Ca and Na
- BCH differentiated from FD mainly via Mg and P
- Except for Cd all heavy metals differentiated BCH and SSP from FD

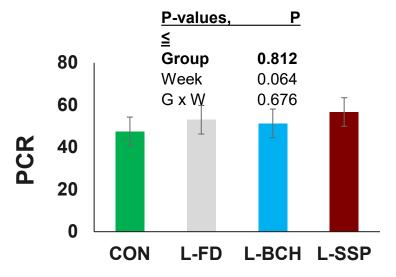
Details of the analysis: Canonical plot of points and means (+) from linear discriminant analysis of larval concentrations of the macro-minerals with groups

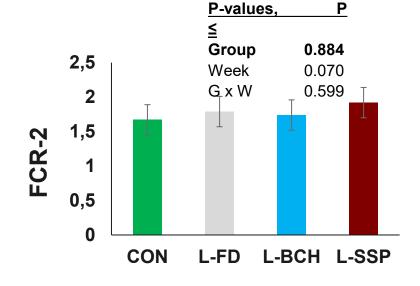

All variables had the same units of measurement (i.e. mg/ kg DM).

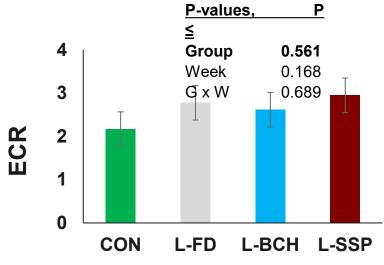
Each dot represents the overall response of one container of BSFL fed on a specific substrate.

The inner circles represent the 95% confidence region for containing the true overall mean of the group, and the outer circles are the 50%

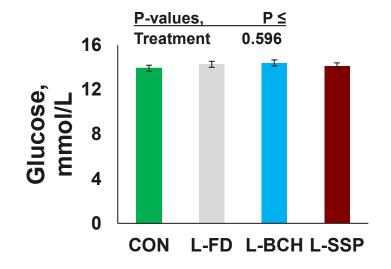

Results: Intake and Growth

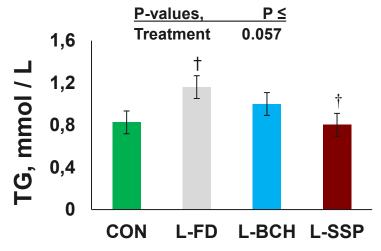


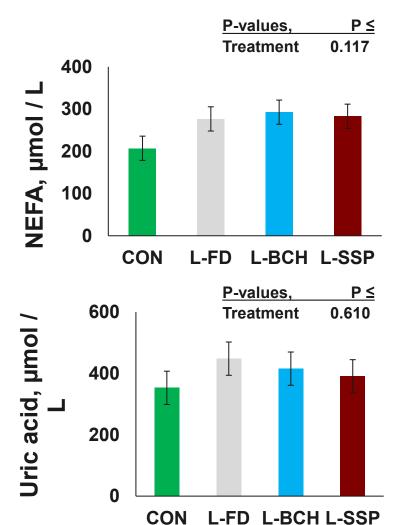



Feed intake and growth of birds were not affected by the groups

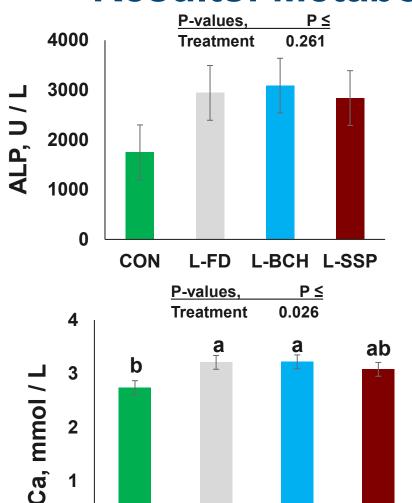
Results: Efficiencies





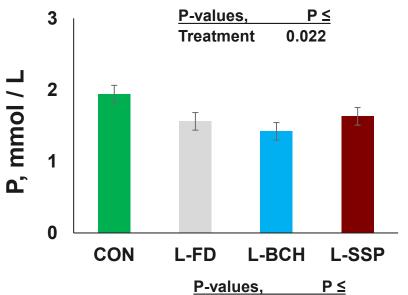


Results: Metabolites



- Plasma glucose, NEFA and uric acid were not affected by groups
- L-FD tended to have higher triglyceride than L-SSP

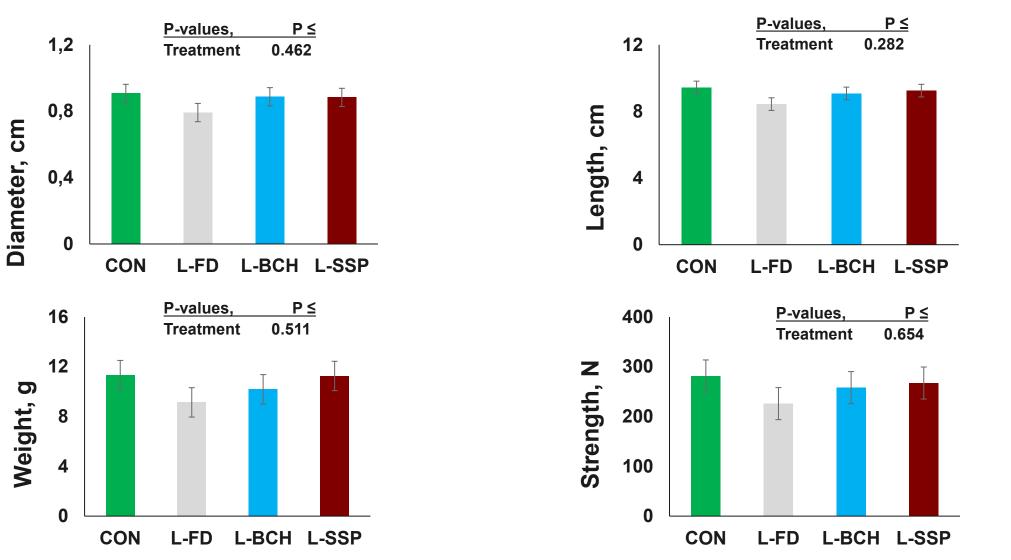
Results: Metabolites


L-FD

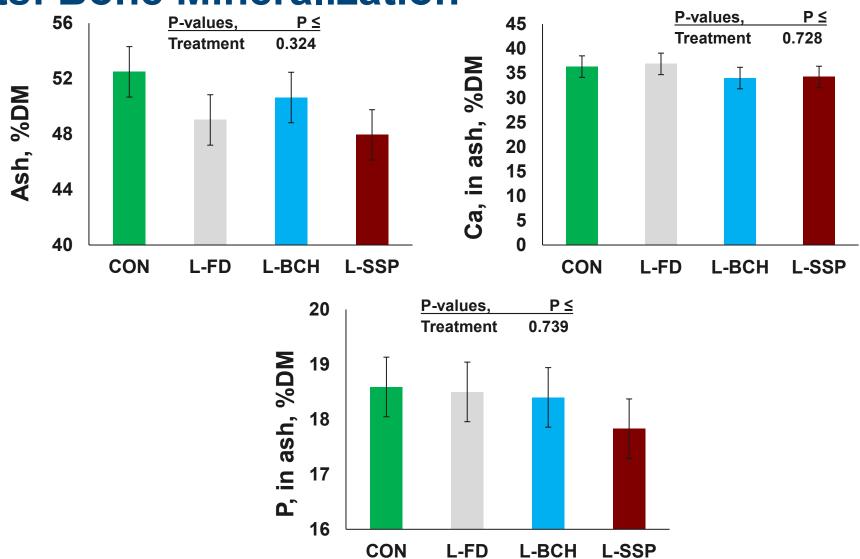
L-BCH

L-SSP

0


CON

- Serum ALP, P and Ca were not affected by groups
- L-FD and L-BCH had higher serum Ca than CON

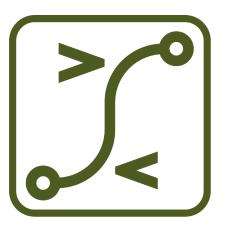

Results: Bone Characteristics

Bone characteristics were not affected by groups

Results: Bone Mineralization

Bone mineralization were not affected by groups

Our four focus topics

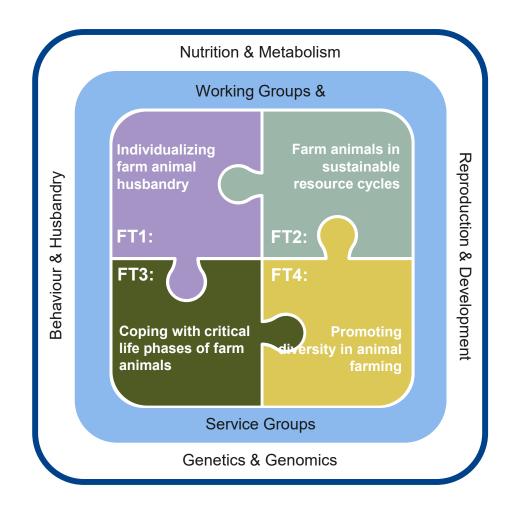


Individualising farm animal husbandry

02

Farming animals in sustainable resource cycles

03


Coping with critical life phases of farm animals

04

Promoting diversity in animal farming

Research Institute for Farm Animal Biology Wilhelm-Stahl-Allee 2 18196 Dummerstorf, Germany

www.fbn-dummerstorf.de