

75th EAAP 2024

Firenze, Italy, 1-5, September 2024

Environmental impact drivers of sheep milk in mixed farms: insights from a combined LCA and multivariate statistical analysis approach

• *M. Finocchi*, A. Mantino, R. Villani, F.G. Cella, A. Cappucci, F. Vichi, G. Conte, G. Foggi, M. Mele

Aims and LCA parameters

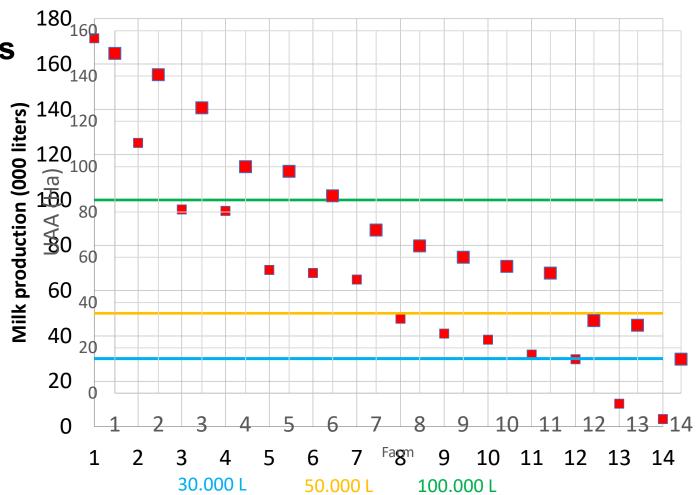
Estimation of the environmental impact of sheep milk production in the southern Tuscany

Functional Unit: 1 kg of FPCM (6.5% fat; 5.8% protein)

Economic allocation for lamb meat production

EN 15804 impact analysis

Farm Characteristics

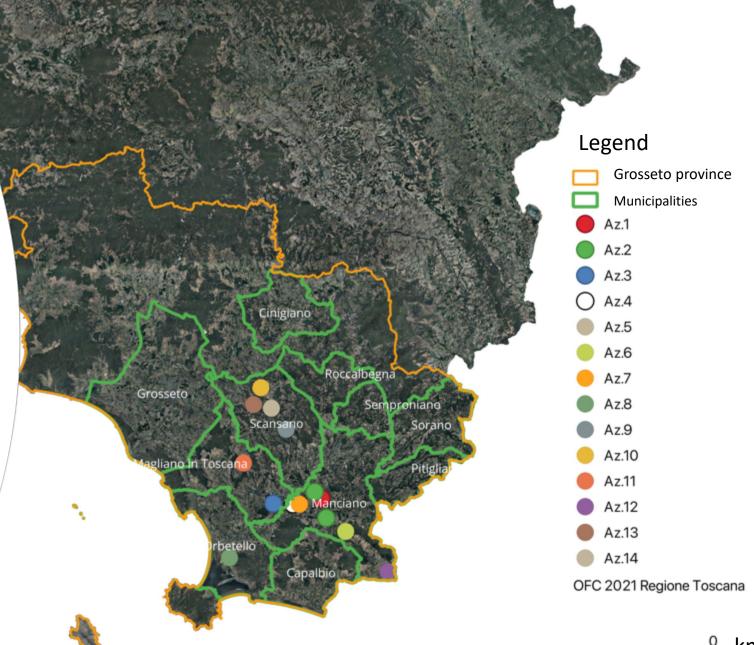

We selected a sample of **14 farms** out of approximately 200

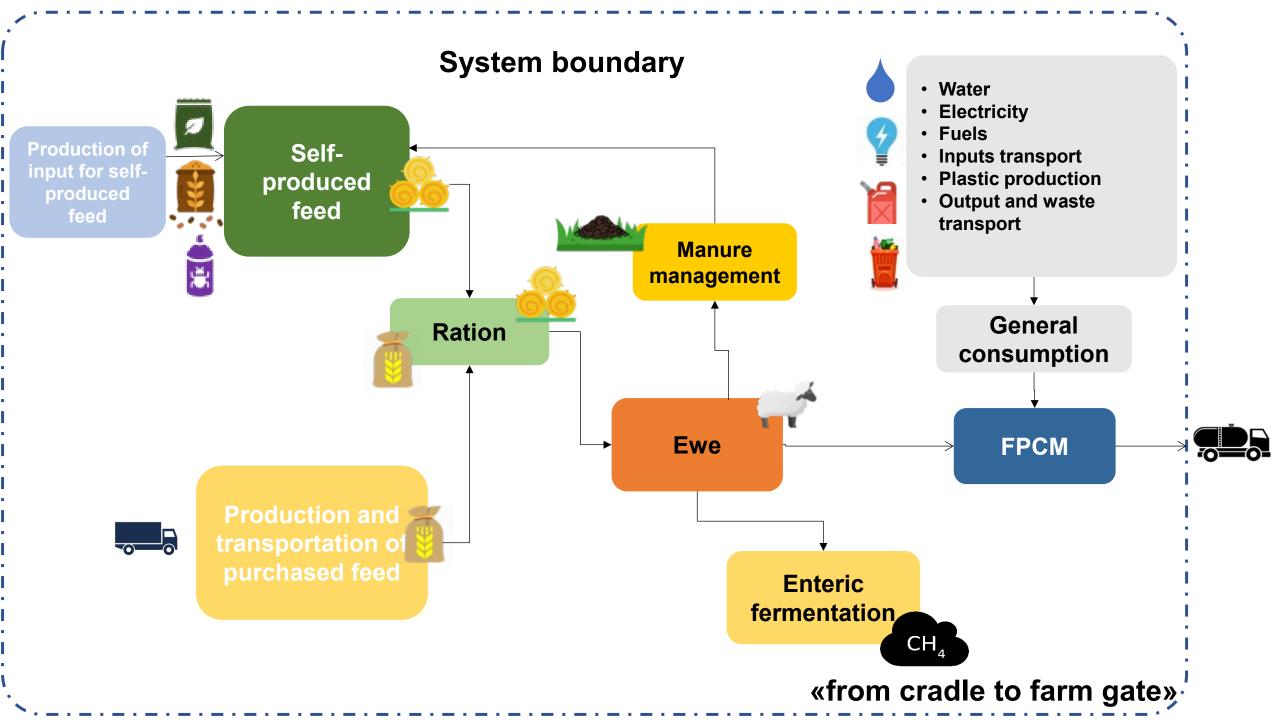
The selection criteria included:

Milk production

Farm size

Distance from the coast Altitude of the farm center




Farms location

Maremma region *Grosseto* province, southern Tuscany.

Mediterranean region

CH₄ and N₂O estimation

Methane from ruminal fermentation: Equations from CNCPS model

(Van Amburgh et al., 2015)

Methane and N₂O from manure management: IPCC 2019 Tier 2

EN 15804 calculation (GWP 100Y)

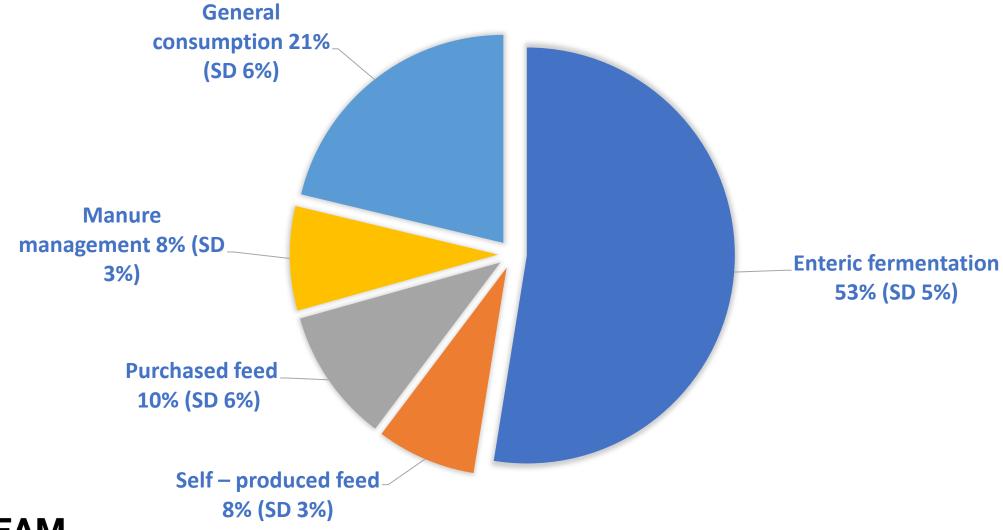
1kg $Methane = 36.8 \text{ kg of } CO_2 \text{ eq}$ 1 kg $Dinitrogen\ monoxide = 298 \text{ kg of } CO_2 \text{ eq}$

Methane from enteric fermentation

- Weekly ewe ration from farm technician
- Nutritional characteristics of feed
 - We have analyzed nutritional values (NDF, ADF, ADL, CP, Starch, WSC, ...) of:
 - Forages: hay and pasture
 - Concentrate: cereal and legume grains
 - Commercial feed
- 5 different animal groups
 - Lactating ewes in spring period
 - Lactating ewes in winter period
 - Dry ewes
 - Non lactating ewes
 - Rams

LCA software and databases

Processing of data collected through modeling in the **OpenLCA** software with the help of parallel processes extrapolated from the **Agribalyse** and **Ecoinvent** databases.



Impact category	Value U.M.	SD
1Global warming potential - Biogenic	2,254 kg CO ₂ eq	0.83
2 Global warming potential - Fossil	1,615 kg CO ₂ eq	0.54
3 Global warming potential - LULUC	0,089 kg CO ₂ eq	0.092
4 Global warming potential - Total	3,959 kg CO, eq	1.28
5 Acidification	0,039 mol H ⁺ eq	0.08
6 Eutrophication fresh water	0,001 kg P eq	0.0009
7 Eutrophication marine	0,019 kg N eq	0.02
8 Eutrophication terrestrial	0,164 mol N eq	0.17
9 Photochemical ozone formation	0,008 kg NMVOC eq	0.011

Global Warming Potential: Total

Statistical analysis

1. Hierarchical Cluster Analysis (HCA)

Purpose: to group farms into clusters based on their characteristics.

2. One-Way ANOVA

```
Model: Y_j = \mu + [\![ cluster ]\!]_i + \varepsilon_{ij}
Y_j = \text{Dependent variable}
\mu = \text{Mean}
\textbf{Cluster} = \text{Fixed effect of the i}^{\text{th}} \text{ cluster (2 levels)}
\varepsilon_{ii} = \text{Random error}
```

3. Principal Component Analysis (PCA)

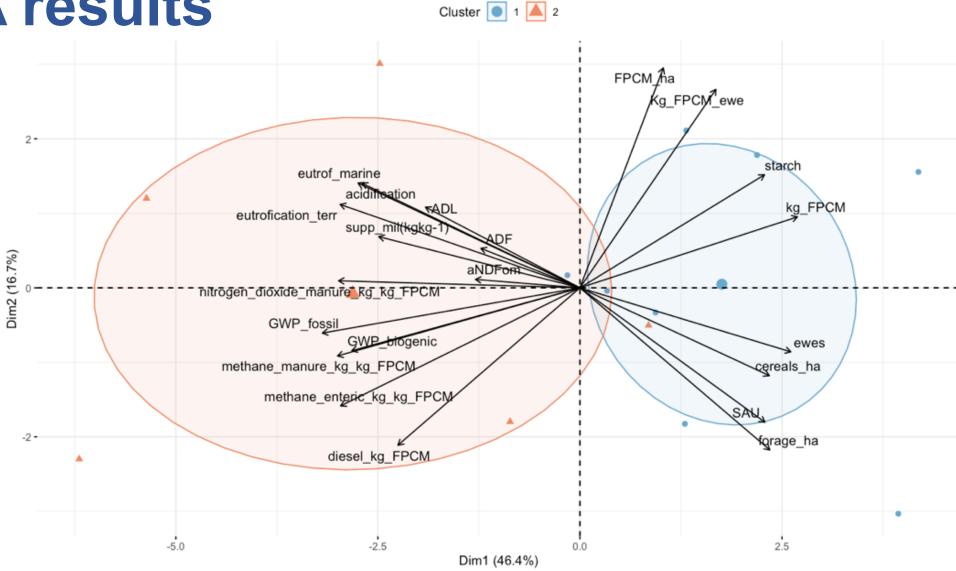
Purpose: to individuate variables associated to the environmental impact descriptors

HCA results

Variables	Farm cluster 1 (n=8)	Farm cluster 2 (n=5)	
Ewes per farm	453	258	
Total heads per farm	527	277	
UAA (ha)	102.45	46.60	
Forage (ha)	71.94	35.34	
Cereals (ha)	14.54	3.42	
Milk production (kg FPCM)	92,026	32,419	
Milk yield (kg FPCM per ewes)	212.24	128.5	

ANOVA Results

Variables	Farm cluster 1 (n=8)	Farm cluster 2 (n=5)	SE	P value
GWP_biogenic (kg CO ₂ eq)	2.16	3.04	0.726	0.056*
GWP_fossil (kg CO ₂ eq)	1.58	2.17	0.0498	0.254
GWP_total (kg CO ₂ eq)	3.84	5.25	0.0475	0.475
Methane enteric (kg kg FPCM ⁻¹)	0.07	0.11	0.030	0.026*
Methane manure (kg kg FPCM ⁻¹)	0.004	0.007	0.002	0.001**
Nitrogen dioxide (kg kg FPCM ⁻¹)	0.0007	0.001	0.0002	0.039*


LS mean values from ANOVA applied to farm clusters obtained by HCA analysis. SE means standard error of the mean.

PCA results

Conclusions

Farm Size & Environmental Efficiency:

Larger farm size (up to 150 ha) reduces environmental impact per litre of F by the increasing of milk yield per ewe and feeding self-sufficiency

Diet & Environmental Impact:

Feeding regimens richer in starch were associated with a lower environmental impact and purchasing concentrates increases environmental impact and decreases self-sufficiency

Strategies for Impact Reduction:

Improve forage nutritive value, especially for preserved forage Enhance self-production of starchy concentrates by cereal cultivation (e.g. winter

Thank you for your attention

matteo.finocchi@phd.unipi.it

