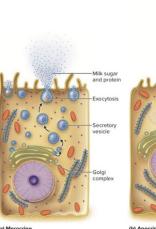
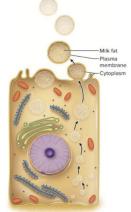
Differences in goat milk yield and composition between evening and morning samples

<u>Henk Bovenhuis</u>, Pim Wolters, Chantal van den Broek, Jan ten Napel & Richard Crooijmans





Introduction

- Difference between morning & evening milkings
 - Efficient milk recording strategies, e.g. alternated onemilking recording
 - Physiological insights
- > Several studies in dairy cattle. Limited info goats
- Differences goats and cows, e.g.
 - Milk yield
 - Milk secretion: merocrine vs apocrine
 - Extended lactations

Aim

Differences morning and evening milkings in goats

- Magnitude
- Identify factors, e.g.
 - Milking interval
 - Temperature Humidity Index
 - Animal, including genetics

Material and Methods

Data from 5 dairy goat farms

Goat farms in the Netherlands

- Average NL: 752 goats.
- No access to pasture.
- Extended lactations.

Material and Methods

Milk recording data

- Milk yield and composition (n=53,366)
 - ✓ Test-day
 - Evening
 - Morning
- 2018 early 2023
- ~6 test-days/year
- Milking time morning & evening
 milking interval
 (n=44,609, 4 Farms)

Material and Methods

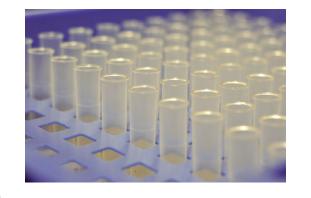
- > Herdbook
 - Lambing date
 - Age
 - Parity
 - Pedigree

➤ Weather conditions on test day → Temperature Humidity Index (THI)

Statistical analysis

Response variables

Difference (Evening-Morning) (Δ)


Fixed effects

- Season (Winter, Spring, Summer, Fall)
- Parity (1, 2, 3,≥4)
- Days in Milk (β)
- Temperature Humidity Index (β)
- Interval between milking's (β)

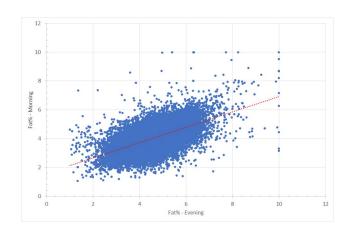
Random effects

- Herd-Test-Day
- Permanent environment
- Genetic

n=53,366

	Test-day
Milk kg	3.85
Fat%	4.18
Protein%	3.54
Lactose%	4.27

	Test-day	Evening	Morning
Milk kg	3.85	1.88	1.97
Fat%	4.18	4.44	3.95
Protein%	3.54	3.54	3.53
Lactose%	4.27	4.28	4.26


	Test-day	Evening	Morning	Evening – Morning (△)
Milk kg	3.85	1.88	1.97	-0.08
Fat%	4.18	4.44	3.95	0.49
Protein%	3.54	3.54	3.53	0.01
Lactose%	4.27	4.28	4.26	0.01

Fat% differs between morning and evening milk samples

n=53,366

	Evening vs Morning					
	Δ r					
Milk kg	-0.08	0.83				
Fat%	0.49 0.60					
Protein%	0.01 0.88					
Lactose%	0.01	0.84				

Results – Random effects

n=44,609, 4 Farms

	h ²	Repeat.	HTD
∆ Milk kg			
∆ Fat%			
△ Protein%			
∆ Lactose%			

$$h^2 = \frac{\sigma_{Genetic}^2}{\sigma_{Total}^2}$$

$$h^{2} = \frac{\sigma_{Genetic}^{2}}{\sigma_{Total}^{2}} \qquad Repeat. = \frac{\sigma_{Genetic}^{2} + \sigma_{E_{p}}^{2}}{\sigma_{Total}^{2}} \qquad HTD = \frac{\sigma_{HTD}^{2}}{\sigma_{Total}^{2}}$$

$$HTD = \frac{\sigma_{HTD}^2}{\sigma_{Total}^2}$$

Results - Random effects

	h ²	Repeat.	HTD
∆ Milk kg	0.02	0.07	0.03
△ Fat%	0.03	0.07	0.09
△ Protein%	0.01	0.03	0.06
∆ Lactose%	0.02	0.03	0.15
	SE~0.005	SE~ 0.004	SE: 0.005-0.018

- Genetic component is (very) small
- Low repeatability some differences between goats
- Herd-Test-Date: ∆ Lactose%

Results – Significance Fixed effects (-log₁₀(p))

	Season	Parity	DIM	THI	Milk interval
∆ Milk kg					
△ Fat%					
△ Protein%					
∆ Lactose%					

$$-\log 10(p=0.001) = 3$$

	Season	Parity	DIM	THI	Milk interval
∆ Milk kg	1.8				
△ Fat%	3.4				
△ Protein%	0.5				
∆ Lactose%	0.1				

	Evening – Morning		
Δ Milk kg	-0.08	Δ Fat%	
Δ Fat%	0.49	Winter:	0.43
Δ Protein%	0.01	Summer:	0.51
Δ Lactose%	0.01		

	Season	Parity	DIM	THI	Milk interval
∆ Milk kg	1.8	2.5			
△ Fat%	3.4	0.6			
△ Protein%	0.5	1.0			
∆ Lactose%	0.1	9.5			

	Evening – Morning
Δ Milk kg	-0.08
Δ Fat%	0.49
Δ Protein%	0.01
Δ Lactose%	0.01

Δ Lactose%
Parity 1 : 0.012
parity ≥4 : 0.032

	Season	Parity	DIM	THI	Milk interval
∆ Milk kg	1.8	2.5	2.1	0.6	
△ Fat%	3.4	0.6	0.5	0.1	
△ Protein%	0.5	1.0	0.0	0.3	
△ Lactose%	0.1	9.5	0.2	1.4	

Small effects of DIM and THI on differences evening vs morning milk

	Season	Parity	DIM	THI	Milk interval
∆ Milk kg	1.8	2.5	2.1	0.6	>300.0
△ Fat%	3.4	0.6	0.5	0.1	113.8
△ Protein%	0.5	1.0	0.0	0.3	87.0
∆ Lactose%	0.1	9.5	0.2	1.4	122.0

Strong effects of milking interval on differences evening vs morning milk

Results - Predicted effects milking interval

Results - predicted effects milking interval

△ Milk kg

△ Fat%

△ Protein%

∆ Lactose%

Evening - Morning

-0.08

0.49

0.01

0.01

Evening -

Morning

0.02

0.41

0.03

0.03

Evening - Morning

-0.32

0.68

-0.04

-0.05

Evening-Morning

Morning-Evening

12 hours

12 hours

13.5 hours

10.5 hours

12:12 interval - still difference in Fat%!!

Discussion

- Results are in line with those found in dairy cattle
 - Hargrove (1994): "Fat percentages in the morning were lower, even when milking intervals were nearly equal."
 - Cassandro et al (1995): "milking interval is the most important source of variation for yield ratios"
- ➤ Jing et al. (2021): "The milk fat content in dairy cows follows a rhythmic pattern and is thought to be regulated by circadian rhythms."
 - circadian rhythm in expression of lipogenic genes PER2, SREBF1, and PPARG

- Strong effects of milking interval on differences evening vs morning milk
- At the same milking interval, Fat% is lower in morning than in evening milk

