

Alternative splicing mRNA isoforms linked to subclinical intramammary infection in Holstein cattle

Vanzin A.¹, Bisutti V.¹, Giannuzzi D.¹, Cecchinato A.¹, Gallo L.¹, Asselstine V.², Cánovas A.², Pegolo S.¹

¹DAFNAE, University of Padova, Padova, Italy

²CGIL, Department of Animal Biosciences, University of Guelph, Guelph, Canada

The 75th EAAP Annual Meeting – September 1st - 5th, 2024 - Florence

Molecular mechanisms involved in subclinical mastitis pathogenesis

more insights needed

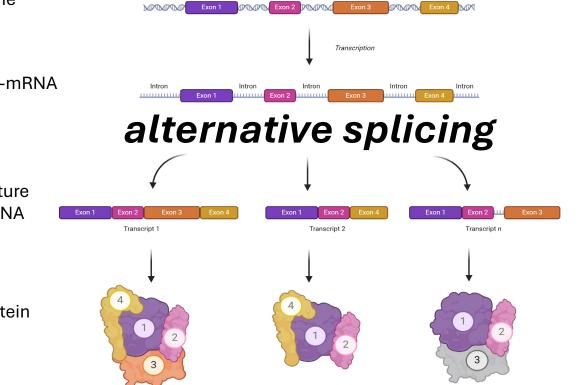
Focus on the TRASCRIPTOME

Studying

gene expression and even deeper the

mRNA isoforms expression

Pre-mRNA


Mature

mRNA

Protein

Alternative splicing generates different mature transcripts the pre-mRNA from same sequence (mRNA isoforms)

relevant Process to several including diseases, bovine mastitis

isoforms expression of healthy animals and

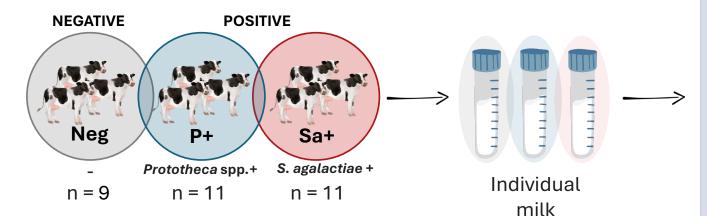
animals with a subclinical intramammary infection

188 Holstein cows

T₀

T1

1 herd in Verona province (Italy)


Prevalence of **S.** agalactiae and **Prototheca** spp.

microbiological screening

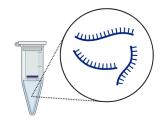
- NEGATIVE
- POSITIVE to Prototheca spp.
- POSITIVE to S. agalactiae

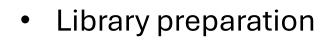
NO clinical signs and previous history of mastitis NO antibiotics treatments Parity ≥ 2 , DIM > 120

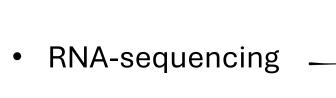
Individual **milk**

Analysis of the **somatic cells transcriptome**

Identification of the differentially expressed mRNA isoforms (DEIs)

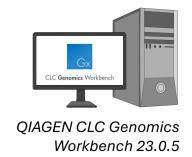






Somatic cells (SC) RNA extraction

DNBSEQ G400 high throughput machine (MGI Tech CO., Ltd.)



WET LAB ANALYSIS

BIOINFORMATIC ANALYSIS

Large Gap Read Mapping ——> Bos Taurus ARS-UCD1.3

Transcript discovery ——> produce a predicted genes and transcripts tracks

BIOINFORMATIC ANALYSIS

Large Gap Read Mapping

Transcript discovery

Mapping and alignment

1 Annotated isoforms

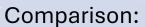
mRNA isoforms discovery

2 Novel length isoforms from annotated genes

3 Novel isoforms from non-annotated genes

BIOINFORMATIC ANALYSIS

STATISTICAL ANALYSIS



Differential mRNA isoforms expression

Counts normalization

t-test with False Discovery Rate (FDR) correction

P+ vs Neg
Sa+ vs Neg

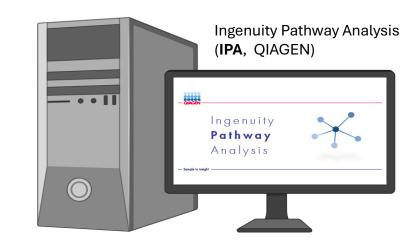
DIFFERENTIALLY EXPRESSED ISOFORMS (DEIs)

FDR < 0.05 and |Fold Change| > 2

BIOINFORMATIC ANALYSIS

STATISTICAL ANALYSIS

FUNCTIONAL ANALYSIS



Canonical pathway

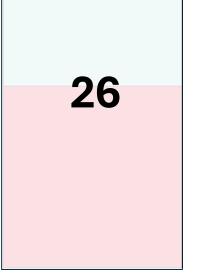
Upstream regulators

Regulator effect

Input: Gene name of the DEIs and their FC

Sa+

Neg



DIFFERENTIALLY EXPRESSED mRNA ISOFORMS (DEIs)

45

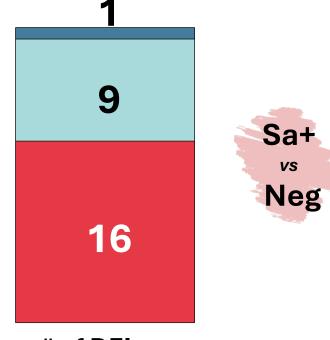
of DEIs

FDR < 0.05 and (|FC|) > 2

P+

VS

Neg



- Novel length isoforms from annotated genes
- Novel isoforms from non-annotated genes

of DEIs

P+

VS

Neg

P+ vs Neg

PDE4C-201

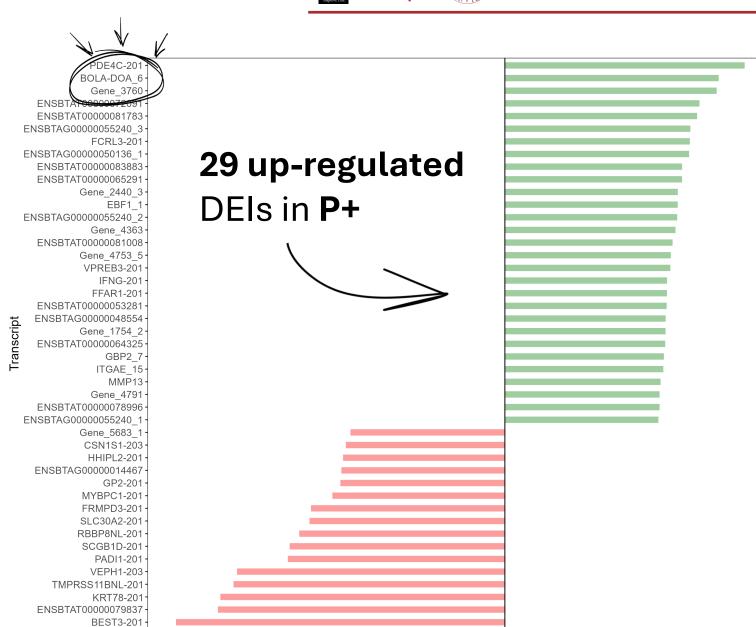
Phosphodiesterase 4C

Annotated transcript

2 splice variants

BOLA-DOA 6

Novel length isoform from annotated genes



12 splice variants

Gene_3760

Novel transcript 1 splice variant

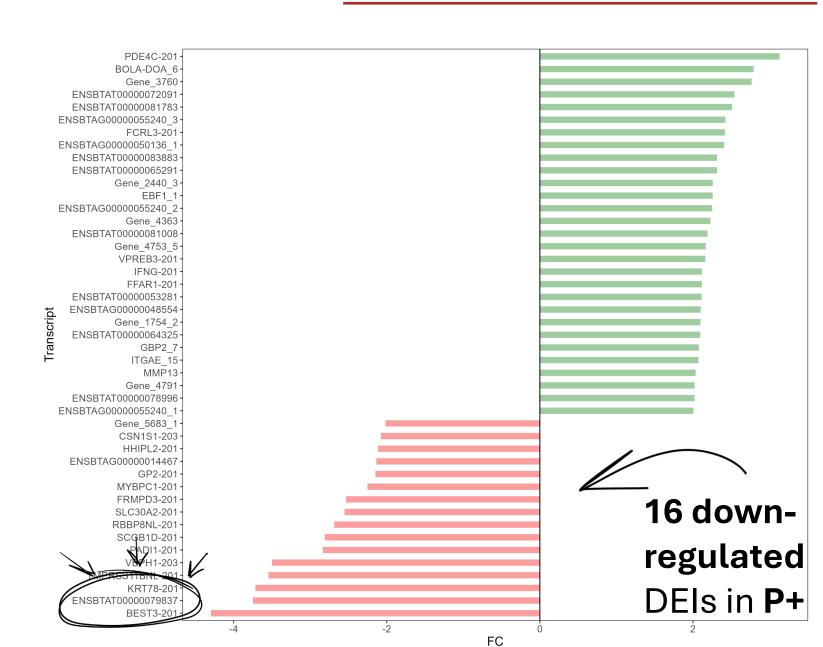
FC

P+ vs Neg

BEST3-201

Bestrophin 3

Annotated transcript 1 splice variant


ENSBTAT00000079837

Annotated transcript 2 splice variant

Annotated transcript

HIPK3_13

Homeodomain interacting protein kinase 3

Novel length isoform from **annotated genes 13** splice variants

TRAF2 5

TNF receptor associated factor 2

Novel length isoform from **annotated genes 17** splice variants

PDE4C-201

Phosphodiesterase 4C Annotated transcript

2 splice variants

Sa+ vs Neg

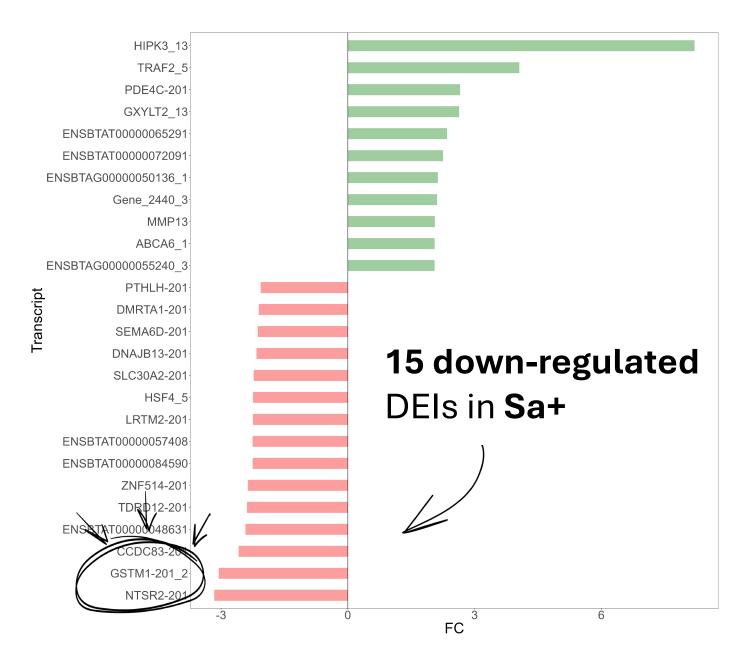
NTSR-201

Neurotensin receptor 2

Annotated transcript 1 splice variants

GSTM1-201_2

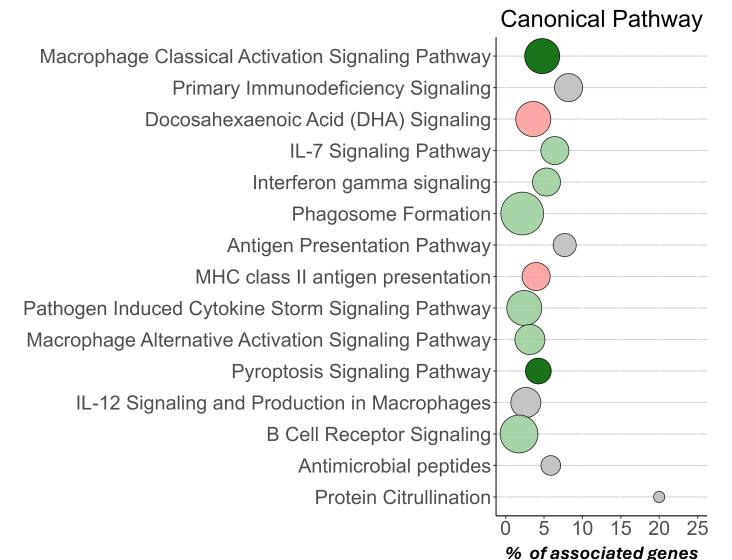
Glutathione S-transferase M1

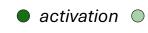

Novel length isoform from **annotated genes**1 splice variants

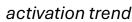
CCDC83-201

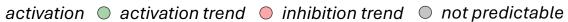
Coiled-coil domain containing 83
Annotated transcript
1 splice variants

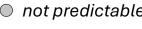
FUNCTIONAL ANALYSIS P+ vs Neg





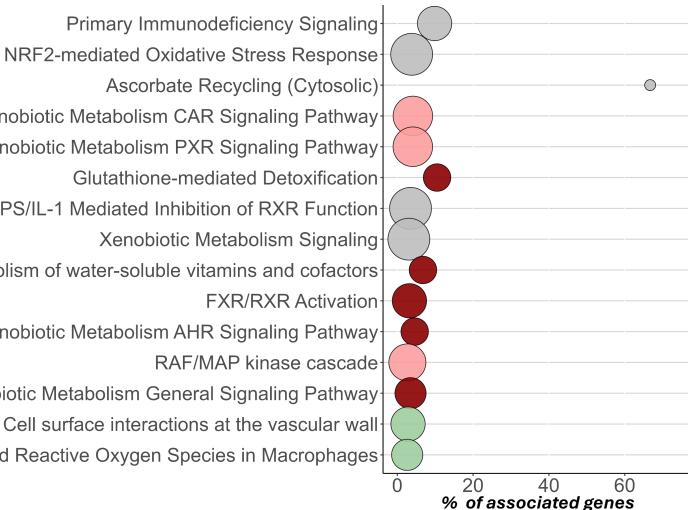



A total of **50** enriched pathways (FDR < 0.05)


Pathways related to immune response!

FUNCTIONAL ANALYSIS Sa+ vs Neg

Canonical Pathway

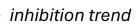


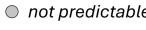
A total of **54** enriched pathways (FDR < 0.05)

Pathways related to metabolism!

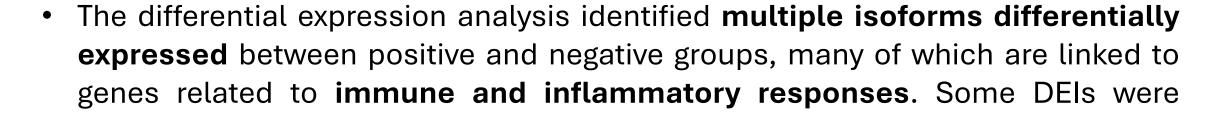
Ascorbate Recycling (Cytosolic) Xenobiotic Metabolism CAR Signaling Pathway Xenobiotic Metabolism PXR Signaling Pathway Glutathione-mediated Detoxification LPS/IL-1 Mediated Inhibition of RXR Function Xenobiotic Metabolism Signaling Metabolism of water-soluble vitamins and cofactors FXR/RXR Activation Xenobiotic Metabolism AHR Signaling Pathway RAF/MAP kinase cascade Xenobiotic Metabolism General Signaling Pathway Cell surface interactions at the vascular wall-

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages





To conclude..



shared, while others were unique to specific comparison

 In Prototheca spp. infection we found enriched pathways predominantly related to immune response, while in S. agalactiae infection predominantly related to metabolism and detoxification process

These **differences** were likely due **to the specific** effects of the two distinct pathogens on **the host immune response**

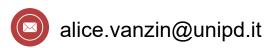
Future perspectives

 Identification of functional variants (SNPs and INDELs) within the expressed regions leading to splice site events potentially responsible for alternative splicing of the detected DEIs

• Validation of these results in an independent population

This research could offer new potential targets for the development of new screening tools for mastitis, as well for the selection of more resistant animals

Agritech National Research Center, funded by the European Union Next-Generation EU (Piano Nazionale di Ripresa e Resilienza (PNRR)–Missione 4, Componente 2, Investimento 1.4–D.D.1032 17/06/2022, CN00000022)

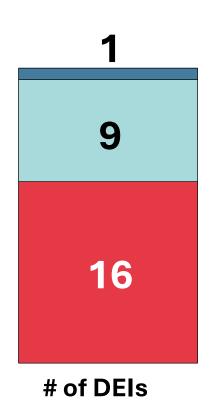


• 24 transcripts with at least two annotated isoforms

FDR < 0.05 and (|FC|) > 2

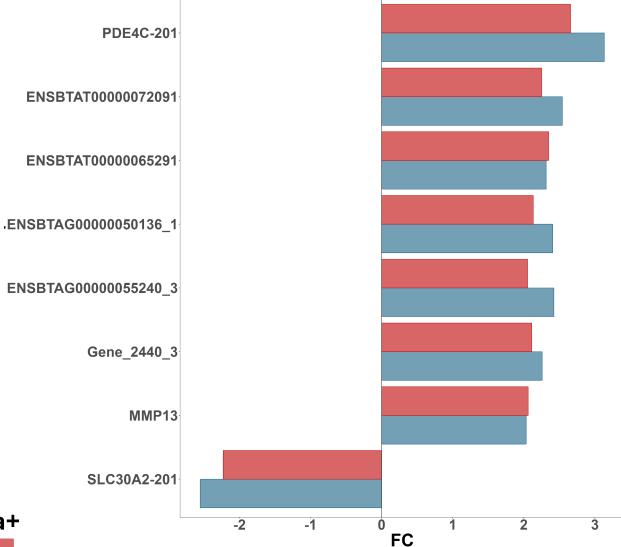
P+

Neg



• All the 26 transcripts derived from **different genes**

• 13 transcripts with at least two annotated isoforms


• 8 DEIs were **shared** between the two comparisons

• All of them showed the same expression pattern

Pathway	-Log(<i>P</i>)	z	trend	overlap R	Ratio%	Genes	Down	No change	Un
Macrophage Classical Activation Signaling	-Log(r)		ticila	Overtap	iatio 70	CXCL10, CXCL11, CXCL9, GBP2, GBP4, HLA-	DOWN	0/189	9/189
Pathway	4.09	3	activation	9	4.76	DOA, HLA-DOB, IFNG, TNFSF11	0/189 (0%)	(0%)	(5%)
1 autway	4.05		no		4.70	DOA, FILA-DOB, II NO, TNI SI TT	0/103 (070)	0/61	5/61
Primary Immunodeficiency Signaling	3.56	0	predictable	5	8.2	IGHA1, IGHG1, IGLL1/IGLL5, JCHAIN, PTPRC	0/61 (0%)	(0%)	(8%)
			inhibition			ADGRF1, ALOX15, FABP3, FFAR1, PDPK1,	()	0/250	3/250
Docosahexaenoic Acid (DHA) Signaling	3.19	-0.333	trend	9	3.6	PLCG2, PRKAA2, RPS6KB2, SPTBN2	6/250 (2%)	(0%)	(1%)
			activation					0/78	5/78
IL-7 Signaling Pathway	3.06	1.342	trend	5	6.41	EBF1, IFNG, IGHG1, PAX5, PDPK1	0/78 (0%)	(0%)	(6%)
			activation					0/94	4/94
Interferon gamma signaling	2.7	1.342	trend	5	5.32	GBP1, GBP2, GBP4, IFNG, IRF6	1/94 (1%)	(0%)	(4%)
						ADGRF1, ADGRV1, COLEC12, FFAR1, GPRC5C,			
			activation			IGHA1, IGHG1, ITGA1, ITGAE, JCHAIN, MAPK4,		0/696	9/696
Phagosome Formation	2.58	0.535	trend	15	2.16	PLCG2, PROKR1, RPS6KB2, S1PR3	6/696 (1%)	(0%)	(1%)
			no					0/39	3/39
Antigen Presentation Pathway	2.23	0	predictable	3	7.69	HLA-DOA, HLA-DOB, IFNG	0/39 (0%)	(0%)	(8%)
			inhibition					0/126	2/126
MHC class II antigen presentation	2.16	-0.447	trend	5	3.97	CTSV, HLA-DOA, HLA-DOB, SEC23A, SPTBN2	3/126 (2%)	(0%)	(2%)
Pathogen Induced Cytokine Storm Signaling			activation			CCL28, CXCL10, CXCL11, CXCL9, HLA-DOA,		0/371	7/371
Pathway	2.05	1.667	trend	9	2.43	HLA-DOB, IFNG, MAPK4, TNFSF11	2/371 (1%)	(0%)	(2%)
Macrophage Alternative Activation Signaling			activation			ALOX15, FFAR1, HLA-DOA, HLA-DOB, IGHG1,		0/190	5/190
Pathway	2.02	1.633	trend	6	3.16	JCHAIN	1/190 (1%)	(0%)	(3%)
								0/94	4/94
Pyroptosis Signaling Pathway	1.92	2	activation	4	4.26	GBP1, GBP2, GBP4, GZMA	0/94 (0%)	(0%)	(4%)
IL-12 Signaling and Production in			no			ALOX15, IFNG, IGHG1, JCHAIN, PRKAA2,		0/228	4/228
Macrophages	1.67	0	predictable	6	2.63	TNFSF11	2/228 (1%)	(0%)	(2%)
			activation			CD22, CD79B, EBF1, IGHA1, IGHG1, JCHAIN,		0/634	10/634
B Cell Receptor Signaling	1.41	1.342	trend	11	1.74	PAX5, PDPK1, PLCG2, PTPRC, RPS6KB2	1/634 (0%)	(0%)	(2%)
			no					0/34	1/34
Antimicrobial peptides	1.39	0	predictable	2	5.88	GNLY, HTN1	1/34 (3%)	(0%)	(3%)
			no						
Protein Citrullination	1.33	0	predictable	1	20	PADI1	1/5 (20%)	0/5 (0%)	0/5 (0%

Pathway	-Log(<i>P</i>)	Z	trend	overlap	Ratio%	Genes	Down	No change	Up
Primary Immunodeficiency Signaling	4.94	0	no predictable	6	9.84	IGHA1,IGHG4,IGLC2,IGLL1/IGLL5,JAK3,PTPRC	0/61 (0%)	0/61 (0%)	6/61 (10%)
NRF2-mediated Oxidative Stress Response	3.77	0	no prodictable	٥	3.8	ABCC4,AOX1,DNAJB13,DNAJB14,GSTM1,GSTM 4,GSTO1,GSTO2,MAP2K1	8/237 (3%)	0/237 (0%)	1/237 (0%)
Ascorbate Recycling (Cytosolic)	3.69	0	no predictable	9 2	66.7	GSTO1,GSTO2,MAP2K1	2/3 (67%)	0/237 (0%)	0/3 (0%)
Xenobiotic Metabolism CAR Signaling Pathway	3.65	-1.89	inhibition trend	8	4.12	GSTM1,GSTM4,GSTO1,GSTO2,MAP2K1,PPP2R2 A,SULT1C4,WSCD2	8/194 (4%)	0/194 (0%)	0/194 (0%)
Xenobiotic Metabolism PXR Signaling Pathway	3.64	-1.89	inhibition trend	8	4.1	CAMK2A,GSTM1,GSTM4,GSTO1,GSTO2,PPP1R1 4B,SULT1C4,WSCD2	8/195 (4%)	0/195 (0%)	0/195 (0%)
Glutathione-mediated Detoxification	3.57	-2	inhibition	4	10.5	GSTM1,GSTM4,GSTO1,GSTO2	4/38 (11%)	0/38 (0%)	0/38 (0%)
LPS/IL-1 Mediated Inhibition of RXR Function	3.51	0	no predictable	9	3.5	ABCC4,GSTM1,GSTM4,GSTO1,GSTO2,IL1RL2,S ULT1C4,TRAF2,WSCD2	7/257 (3%)	0/257 (0%)	2/257 (1%)
Xenobiotic Metabolism Signaling	3.09	0	no predictable	9	3.06	CAMK2A,GSTM1,GSTM4,GSTO1,GSTO2,MAP2K ² ,PPP2R2A,SULT1C4,WSCD2	l 9/294 (3%)	0/294 (0%)	0/294 (0%)
Metabolism of water-soluble vitamins and cofactors	2.84	-2	inhibition	4	6.78	AOX1,GSTO1,GSTO2,MOCOS	4/59 (7%)	0/59 (0%)	0/59 (0%)
FXR/RXR Activation	2.32	-2.449	9 inhibition	6	3.21	GSTM1,GSTM4,GSTO1,GSTO2,PRKAA2,TNFSF8	5/187 (3%)	0/187 (0%)	1/187 (1%)
Xenobiotic Metabolism AHR Signaling Pathway	2.23	-2	inhibition	4	4.6	GSTM1,GSTM4,GSTO1,GSTO2	4/87 (5%)	0/87 (0%)	0/87 (0%)
RAF/MAP kinase cascade	2.2	-0.378	inhibition 3 trend	7	2.67	CAMK2A,EREG,JAK3,MAP2K1,NF1,RASAL1,TEK	4/262 (2%)	0/262 (0%)	3/262 (1%)
Xenobiotic Metabolism General Signaling Pathway	2.16	-2.23	3 inhibition	5	3.5	GSTM1,GSTM4,GSTO1,GSTO2,MAP2K1	5/143 (3%)	0/143 (0%)	0/143 (0%)
Cell surface interactions at the vascular wall	2.07	0.816	activation trend	6	2.84	CD47,IGHA1,IGLC2,IGLL1/IGLL5,SDC2,TEK	2/211 (1%)	0/211 (0%)	4/211 (2%)
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	1.66	1.342	activation trend	5	2.62	JAK3,MAP2K1,NCF1,PPP1R14B,PPP2R2A	3/191 (2%)	0/191 (0%)	2/191 (1%)