Preservation of milk in liquid nitrogen during sample collection does not affect RNA quality for RNA-seq analysis

L. Jiménez-Montenegro, J.A. Mendizabal, L. Alfonso, O. Urrutia *ETSIAB-ISFOOD, Public University of Navarre, Campus de Arrosadia 31006, Spain*

Lucía Jiménez Montenegro

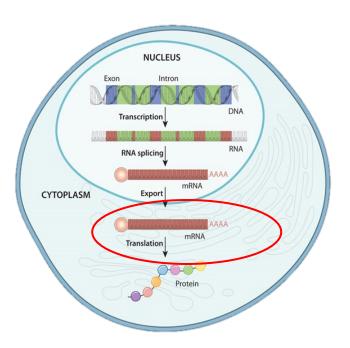
PhD student in Biotechnology at the Public University of Navarre.

INTRODUCTION

1.2. Why studying the mammary gland transcriptome?

1. Introduction

- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions


MAMMARY GLAND

In charge of synthesis and secretion of MILK

TRANSCRIPTOMIC

Will increase the BIOLOGICAL and PHYSIOLOGICAL knowledge of LACTATION

1.3. RNA sources for studying the mammary gland

1. Introduction

- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

From TISSUE samples

- Mammary biopsies
- Laser microdissected mammary epithelial cells (LCMEC)

- No opportunities for multiple sampling
- ★ Disrupts normal lactation process

From MILK samples

- Milk Somatic cells (MSC)
- Antibody-captured milk mammary epitelial cells (mMEC)
- Milk Fat Globules (MFG)

mMEC: difficult to obtain

MF

A good representation of the mammary gland transcriptome (Yang et al., 2015)

1.3. RNA sources for studying the mammary gland

MFG formation

1. Introduction

- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

Mammary

Epithelial Cell (MEC)

Apical Plasma Membrane Bilayer The MFG envelop fragments of MEC Lipid droplets TAG core + Phospholipid Monolayer (cytoplasmic crescents) Milk Fat Globules (MFG) Lipid Droplet + Apical Plasma Triglyceride Membrane Bilayer (TAG) cores Endoplasmic Reticulum Nucleus In which different types

of RNA from MEC could

be found

1.4. Milk sample collection for RNA-seq analysis

1. Introduction

- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

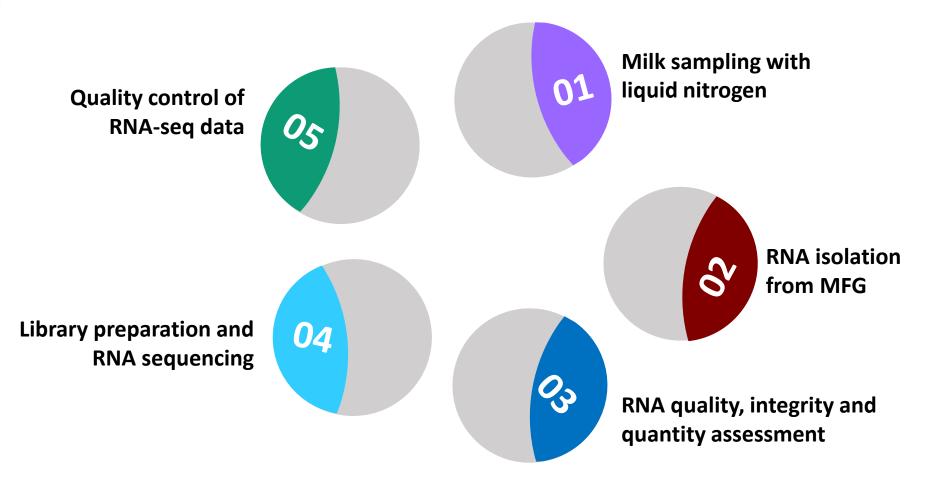
Standard procedures for milk sample collection in transcriptome analysis

- Require inmediate milk sample processing
- **MILK**: challenging matrix
 - ➤ High abundance of ribonucleases
 - > Low quantity of RNA

ALTERNATIVE MILK SAMPLE COLLECTION

- No inmediate milk sample processing
- Inactivation of ribonucleases

Liquid Nitrogen


OBJECTIVES

The applicability of a method for milk preservation with liquid nitrogen during sample collection, subsequent extraction of total RNA from milk fat globules and its sequencing by RNA-seq

1. Introduction

2. Objectives

- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

MATERIAL AND METHODS

3.1. Milk sampling with liquid nitrogen

1. Introduction

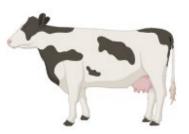
2. Objectives

3. Materials and Methods

4. Results and Discussion

5. Conclusions

Fifteen Holstein cows from a commercial farm (Navarre, Spain) were selected for the study.


Milk was directly collected from the udder of the cow

...into **50 mL** RNase-free tubes...

...which were immediately snapfrozen in **LIQUID NITROGEN** and then **stored at -80°C** until further analysis.


3.2. RNA isolation from milk fat globules (MFG)

To enable **MFG collection** 1. Introduction Milk sample pretreatment 2. Objectives

3. Materials and Methods

4. Results and Discussion

5. Conclusions

MFG fraction

3.3. RNA integrity, quality and quantity assesment

1. Introduction

2. Objectives

3. Materials and Methods

4. Results and Discussion

5. Conclusions

Nanodrop 2000

• Concentration: A₂₆₀

Quality: A_{260/280}

√ RNA: 1.9-2.1

Quality: A_{260/230}

✓ RNA: 2.0-2.2

*A= Absorbances

TapeStation 4200 RNA Screentape

Integrity: RIN

√ RNA ≥ 7

*RIN= RNA Integrity Number

Qubit 4 fluorometer

Concentration: RNA HS

• Integrity: RNA IQ

√ RNA ≥ 9

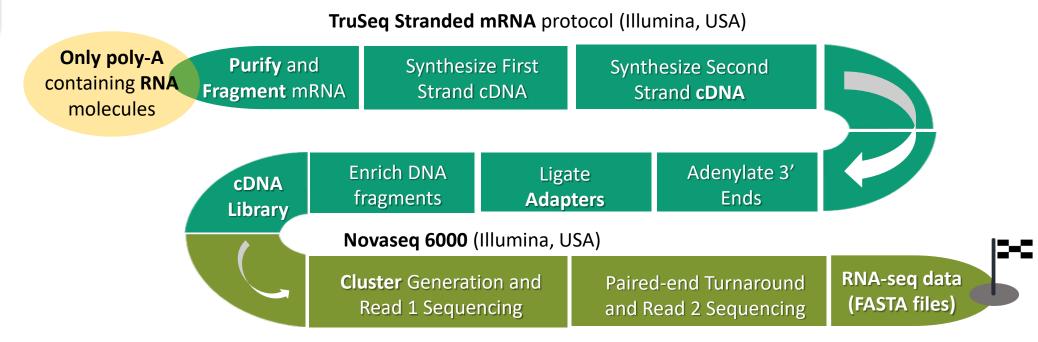
*HS=High Sensitivity; IQ= Integrity and Quality

Statystical analysis:

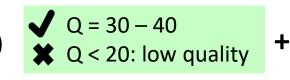
- A_{260/280}: one sample equivalence test
- RIN and RNA IQ: one-sample non-inferiority test

3.4. Library preparation, mRNA sequencing and quality control

1. Introduction


2. Objectives

3. Materials and Methods

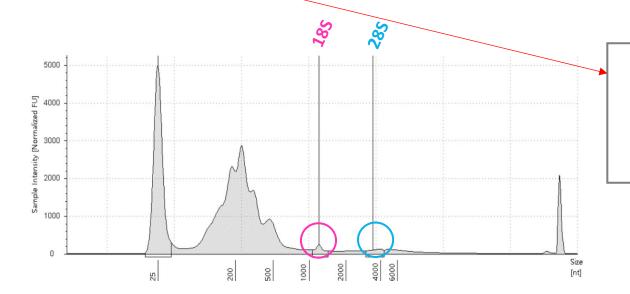

4. Results and Discussion

5. Conclusions

Library preparation and mRNA sequencing

- Quality control of RNA-seq data
- Base quality scores of RNA-seq reads: Phred scale (Q)

Report


RESULTS AND DISCUSSION

4.1. RNA integrity, quality and quantity assesment

Quality and Integrity

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

Variable	Mean	SE	Reference value	Tested H ₀	<i>P</i> -value	
A _{260/280}	2.03	0.01	1.9-2.1	Mean-Reference ≤ -0.1 or Mean-Reference ≥ 0.1	$P_1 = 0.000 / P_2 = 0.000$	
IQ	9.51	0.15	> 9	Mean-Reference ≤ 0	P = 0.010	
RIN	3.59	0.27	> 7	Mean-Reference ≤ 0	<i>P</i> = 1.000	

The RNA from the MFG contains a large amount of low molecular weight RNA fragments and a small amount of 28S and 18S rRNA (RIN).

4.1. RNA integrity, quality and quantity assesment

1. Introduction

2. Objectives

3. Materials and Methods

4. Results and Discussion

5. Conclusions

Variable	Mean	SE	Minimum	Maximum	n
Nanodrop (ng/μL)	120.43	22.3	31.09	366.91	15
Qubit HS (ng/μL)	102.87	15.6	22.00	198.00	14

Same initial MFG quantity per animal (20-25 milk fat), but...

Low RNA concentration

&

High variability between animals

Quantity

4.2. cDNA library quantification

1. Introduction

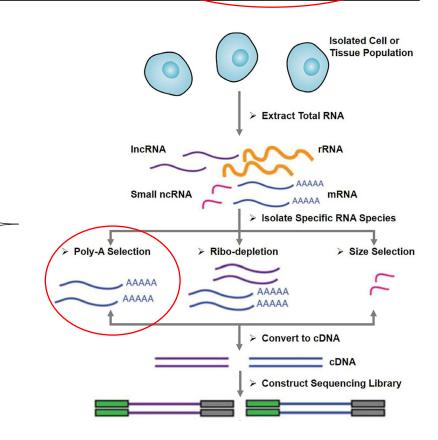
2. Objectives

3. Materials and Methods

4. Results and Discussion

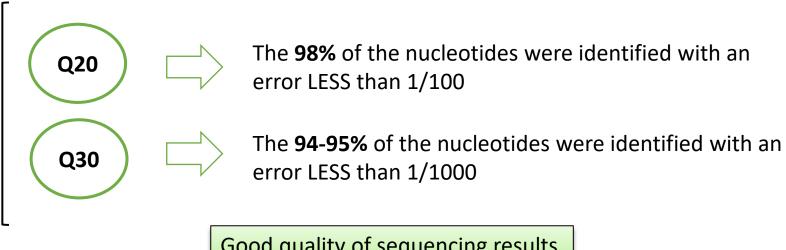
5. Conclusions

Variable	Mean	Standard error	Minimum	Maximum <i>n</i>
Library concentration (nM)	8.64	5.0	1.60	39.70 15


High variability among cDNA libraries

Same initial input

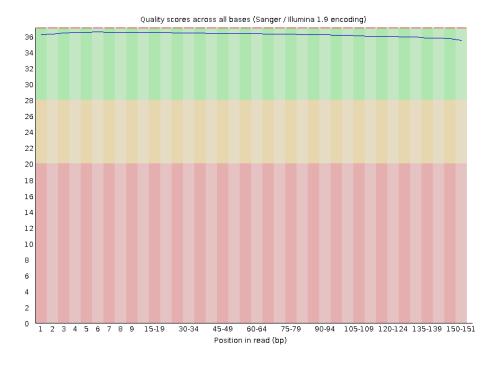
(1µg of total RNA/animal)


Different quantities of mRNA molecules within total RNA

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

A) Sequencing results

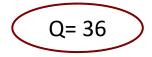
- A total of **791 million reads** were generated.
- An average read number of **52.7 million reads per sample.**

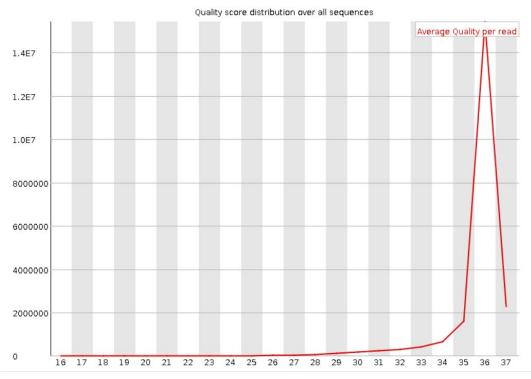

Good quality of sequencing results

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

B) FastQC results

Quality score per base

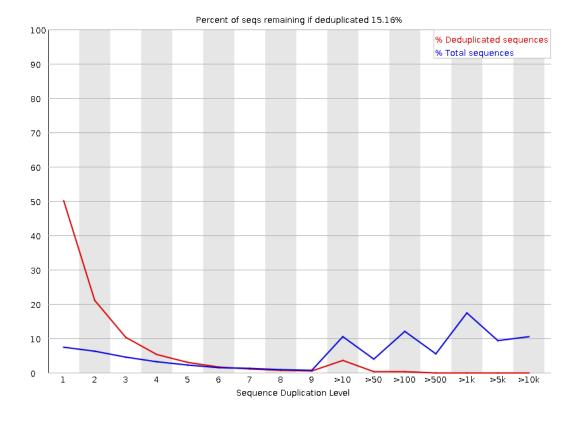



№FastQC Report

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

B) FastQC results

Quality score per sequence


№FastQC Report

№FastQC Report

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions

B) FastQC results

Sequence Duplication levels ← → Overrepresented sequences

In a RNA-seq experiment is normal the presence of....

• Biologically relevant transcripts for this RNA matrix.

CONCLUSION

GENERAL CONCLUSIONS

- Results suggest that milk preservation using liquid nitrogen is a suitable sample collection method that prevents RNA degradation and overcomes the limitations of immediate sample processing required if using ice.
- The quality, integrity and quantity of the RNA extracts isolated from MFG were adequate allowing successful downstream RNA-seq analysis.

TAKE HOME MESSAGES

- This procedure could be considered a more **practical** and **non-invasive** means of measuring the mammary epithelial cell transcriptome.
- The **RNA** isolated from **MFG** contained **low** molecular RNA fragments and a very **low amount of 18S and 28S rRNA** due to the presence of small amounts of cytoplasmic material. Because of that **RIN** values are generally **below** the benchmark of **7**.

- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions