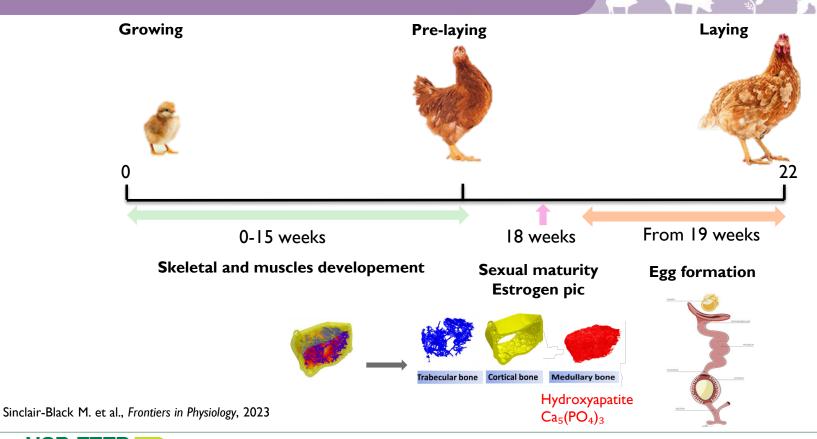
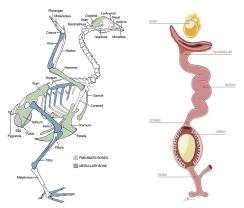


Studying The Impact Of A Standardized Dry Grape Extract On Pullets' Metabolome

04/09/2024



ABERKANE Fatima Zohra


The story of a laying hen

The story of a laying hen

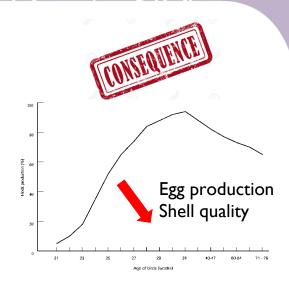
Laying and eggs formation

Skeletal system Reproductive system

- ✓ 20%-40% of calcium from bones
- ✓ Bone resorption by osteoclastesis

Repeated process

High metabolism


Environnemental challenges

Vaccination

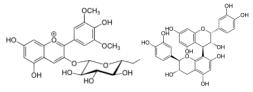
Oxidative stress

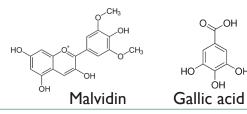
High frequency vaccination-induced immune stress reduces bone strength with the involvement of activated osteoclastogenesis in layer pullets

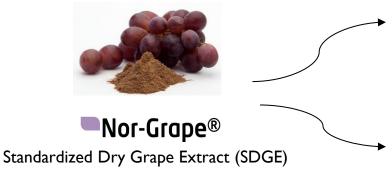
Mengze Song ${}^{\textcircled{\tiny{1}}}$, Xiaoyan Lin, Jingpeng Zhao, Xiaojuan Wang, Hongchao Jiao, Haifang Li, Shuhong Sun, and Hai ${\rm Lin^1}$

Osteoporosis

The story of a laying hen: giving hand?

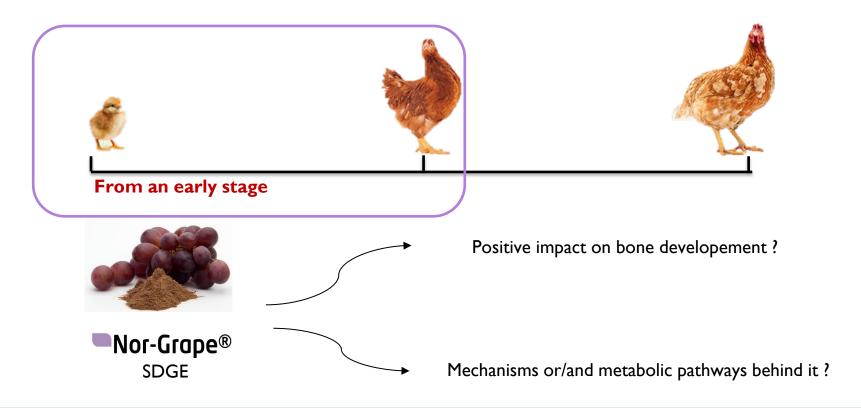



From an early stage


Standardisation on polyphenols:

Anthocyanins

Procyanidins



Increases production of antioxidant enzymes

Better immune response

Engler et al., 2021, published results

Objective: study of the impact of a Standardized Dry Grape Extract (SDGE) on pullets' bones and the contribution to the characterization of its mode of action

Evaluation of Standardized Dry Grape Extract (SDGE) on pullets

CTL (n=18150)

30mg/kg NG (n=18150)

WkI7

Bone parameters analysis

✓ Bones sampling

Analysis	Parameter
Autopsy	Keel bone deformity
Bone quality	Bone flexibility, dry matter, mineral matter, Ca + P content

Metabolomic analysis

√ F

Plasma sampling

Metabolites extraction

Hydrophobic extracts

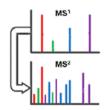
Hydrophilic extracts

2 groups; n=2x8

Control group

NG group

Zhang et al., analytical chemistry, 2019


Hydrophobic extracts

Hydrophilic extracts

UHPLC-QTOF analysis

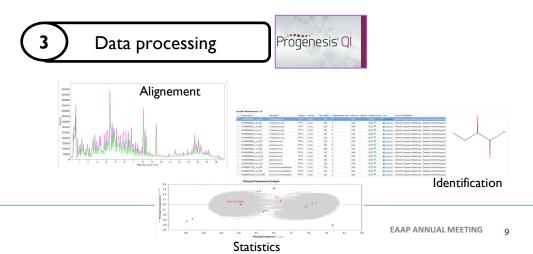
- √ Separation
 - ✓ Ionisation (ESI- and ESI+)
 - √ Fragmentation

- 2 groups; n=2x8
 - Control group

NG group

Hydrophobic extracts

Hydrophilic extracts


2 UHPLC-QTOF analysis

2 groups; n=2x8

Control group

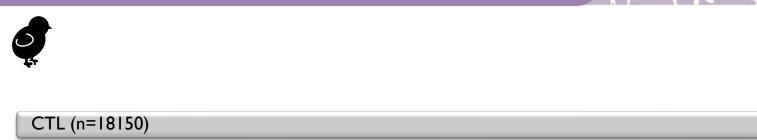
NG group

Hydrophobic extracts

Hydrophilic extracts

2 UHPLC-QTOF analysis

2 groups; n=2x8


Control group

NG group

3 Data processing

WkI7

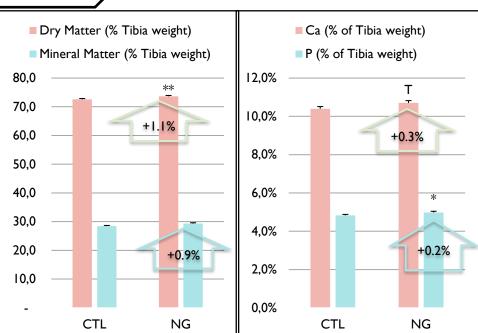
Bone parameters analysis

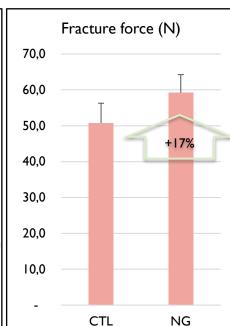
✓

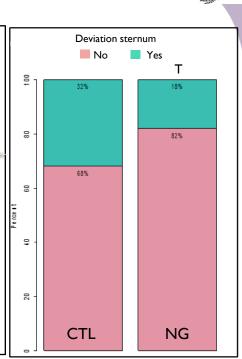
30ppm NG (n=18150)

Bones sampling

Metabolomic analysis




Plasma sampling



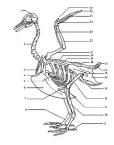
Evaluation of SDGE on pullets: bones parameters analysis

Results

SDGE increases mineral content and strengthens pullet's bones

CTL (n=18150)

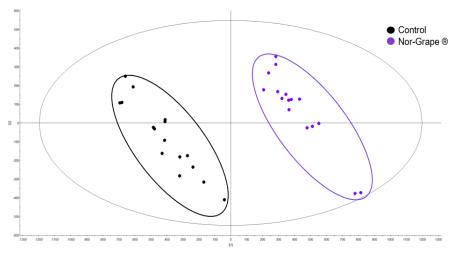
30ppm NG (n=18150)



√

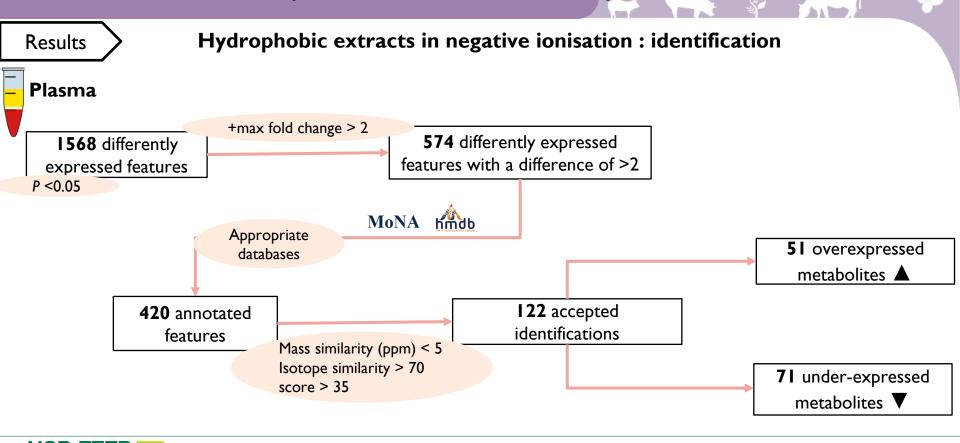
Plasma sampling

WkI7


Hydrophobic extracts in negative ionisation: PLS-DA

After 17 weeks of supplementation :

Control (CTL) VS SDGE (Nor-Grape®)


8 plasma samples of laying hens (n=8)

2 analytical replicates for each extract

✓ PLS-DA of 1568/9671 differently expressed features (p <0,05)

Hydrophobic extracts in negative ionisation: pathway analysis

nathway name	pathway source	overlapping metabolites		P-value		
Free fatty acid receptors (FFAR)	Reactome	2	23	<0.01		
γ-glutamyl cycle	HumanCyc	2	29	<0.0I	Antioxidant	
Proton/oligopeptide cotransporters	Reactome	I	2	<0.01	metabolism	
histamine biosynthesis	HumanCyc	I	4	<0.05		
Methylhistidine Metaholism	SMPDR	ı	4	<0.05		
G alpha (q) signalling events	Reactome	2	56	<0.05		
Gamma-glutamyl cycle for the biosynthesis and						
degradation of glutathione	Wikipathways	I	6	<0.05		
Deadenylation-dependent mRNA decay	Reactome	I	8	<0.05	Free Fatty Acids	
Organic anion transport	Reactome	I	8	<0.05	Receptors	
Miscellaneous transport and binding events	Reactome	I	9	<0.05	Receptors	
Fatty Acids bound to GPR40 (FFARI) regulate insulin secretion	Reactome	I	9	<0.05	_	
Arachidonate Epoxygenase - Epoxide Hydrolase	Wikipathways		11	<0.05		

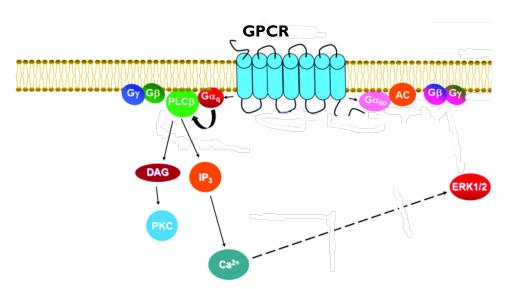
SDGE impacts pathways related to **G-proteins-coupled receptors** (**GPCR**)

Metabolic pathways impacted by grape extract

In Gallus gallus

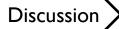
Free Fatty Acid Receptors (FFAR)

G alpha (q) signalling events GPCRFFARS are G protein-coupled receptors activated by free fatty acids $G\alpha_{12/13}$ $G\alpha_{3}$ $G\alpha_{3}$ $G\alpha_{3}$ $G\alpha_{4}$


Both **FFAR2** and **FFAR4** are present in chicken and possess an α_q subunit

Metabolic pathways impacted by grape extract

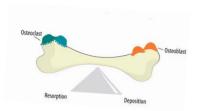
What's important about α_q subunit?



Regulation of osteoblast differentiation

Calcium signaling

 $\alpha_{\mathbf{q}}$ subunit regulates calcium mobilization and osteoblast differentiation


Metabolic pathways impacted by grape extract What is the exact role of FFAR in bone development?

> Endocrinology. 2016 Jul;157(7):2621-35. doi: 10.1210/en.2015-1855. Epub 2016 May 4.

Free Fatty Acid Receptor 4 (GPR120) Stimulates Bone Formation and Suppresses Bone Resorption in the Presence of Elevated n-3 Fatty Acid Levels

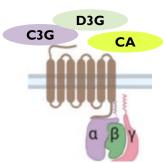
Seong Hee Ahn ¹, Sook-Young Park ¹, Ji-Eun Baek ¹, Su-Youn Lee ¹, Wook-Young Baek ¹, Sun-Young Lee ¹, Young-Sun Lee ¹, Hyun Ju Yoo ¹, Hyeonmok Kim ¹, Seung Hun Lee ¹, Dong-Soon Im ¹, Sun-Kyeong Lee ¹, Beom-Jun Kim ¹, Jung-Min Koh ¹

FFAR4 increases osteoblastic bone formation and decreases osteoclastic bone resorption

FFA receptors regulates bone developement

Metabolic pathways impacted by grape extract

What ligands activate these receptors?


Food Sci Biotechnol (2020) 29(4):579–584 https://doi.org/10.1007/s10068-019-00688-4

Effect of propolis phenolic compounds on free fatty acid receptor 4 activation

Hyunnho Cho¹ · Kyong Kim¹ · Nayeon Kim¹ · Minji Woo¹ · Hye Young Kim¹ ₀

Several polyphenols, including caffeic acid, activates FFAR4

> PLoS One. 2018 Jul 11;13(7):e0200449. doi: 10.1371/journal.pone.0200449. eCollection 2018.

Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake

Diego A Luna-Vital ¹, Elvira Gonzalez de Mejia ¹

Affiliations + expand

PMID: 29995924 PMCID: PMC6040766 DOI: 10.1371/journal.pone.0200449

Free PMC article

C3G, D3G and other anthocyanins activate FFAR1 receptor.

Polyphenols can also activate FFAR receptors.

C3G : cyanidin-3-O-glucoside

D3G : Delphinidin-3-O-glucoside

CA: caffeic acid

Results

Hydrophobic extracts in negative ionisation: pathway analysis

pathway name	pathway source	overlapping metabolites		P-value	
Free fatty acid receptors (FFAR)	Reactome	2	23	<0.01	
γ-glutamyl cycle	HumanCyc	2	29	<0.01	
Proton/oligopeptide cotransporters	Reactome	I	2	<0.01	Antiquida
histamine biosynthesis	HumanCyc	I	4	<0.05	Antioxida
Methylhistidine Metabolism	SMPDB	I	4	<0.05	metabolis
G alpha (a) signalling events	Reactome	2	56	< 0.05	
Gamma-glutamyl cycle for the biosynthesis and degradation of					
glutathione	Wikipathways	I	6	<0.05	
Deadenylation-dependent mRNA decay	Reactome	I	8	<0.05	
Organic anion transport	Reactome	I	8	<0.05	
Miscellaneous transport and binding events	Reactome	I	9	<0.05	
Fatty Acids bound to GPR40 (FFARI) regulate insulin secretion	Reactome	I	9	<0.05	
Arachidonate Epoxygenase - Epoxide Hydrolase	Wikipathways	I	11	<0.05	

Metabolic pathways impacted by grape extract

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 13, pp. 8864–8870, March 31, 2006 © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

Activation of Family C G-protein-coupled Receptors by the Tripeptide Glutathione*

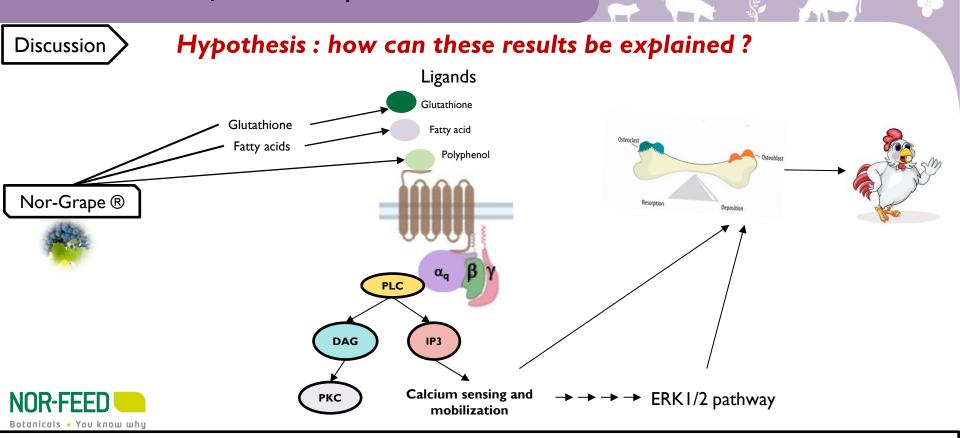
Received for publication, December 1, 2005, and in revised form, January 26, 2006 Published, JBC Papers in Press, February 2, 2006, DOI 10.1074/jbc.M512865200

Minghua Wang¹, Yi Yao¹, Donghui Kuang, and David R. Hampson²

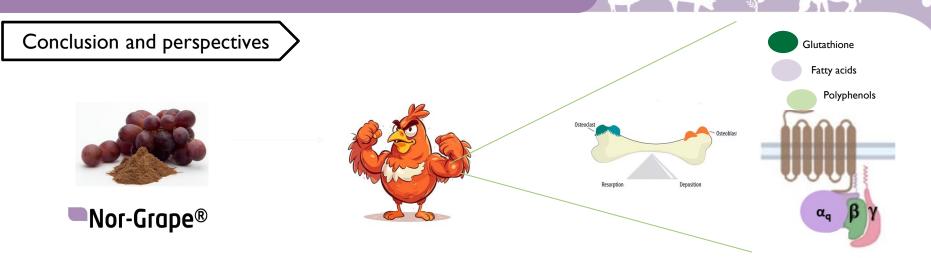
From the Departments of Pharmaceutical Sciences and Pharmacology, University of Toronto, Toronto, Ontario M5S 2S2, Canada

In vitro tests showed that CaSR receptors could be activated by gluthathione

Molecular distribution and localization of extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) at three different laying stages in laying hens (Gallus gallus domesticus)


Qianru Hui,* Xiaoya Zhao,* Peng Lu,* Shangxi Liu,* Martin Nyachoti,* Karmin O,*, *,† and Chengbo Yang*, 1

*Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and †CCARM, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada


- CaSR is a member of the GPCR family.
- The CaSR gene is overexpressed at the beginning of the W19. Localization in different tissues including the tibia.

CaSR receptor could be responsible for calcium mobilization in laying hens

A synergistic effect of Nor-Grape® compounds may activate directly or indirectly several GPCR receptors and ensures bones strength in pullets

- Supplementing pullets with Nor-Grape® strengthens their bones and prepares them for laying cycles.
- A synergistic effect of Nor-Grape® compounds may be responsible for the activation of GPCR receptors to
 ensure this effect.
- Further analysis are necessary to test these hypotheses in order to valide Nor-Grape® mechanism of action.

