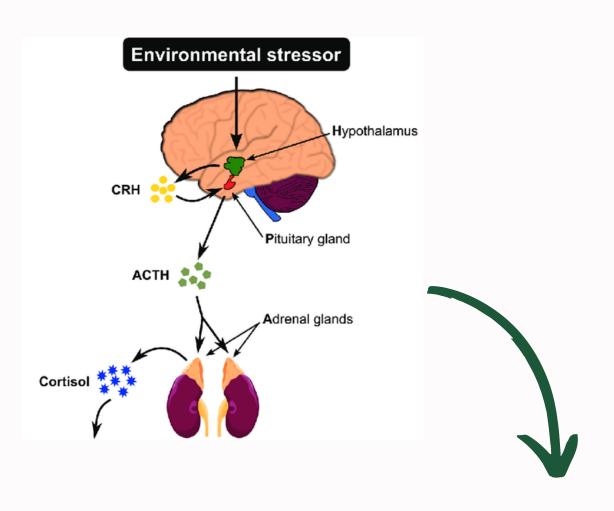


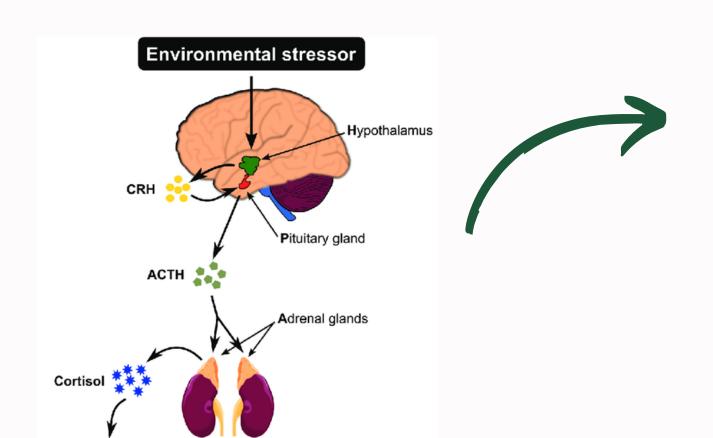
75th EAAP Annual Meeting

NURTURING PROGENY: PROBIOTICS' INFLUENCE ON SOW GESTATION PERFORMANCE AND PIGLET WEANING WEIGHT

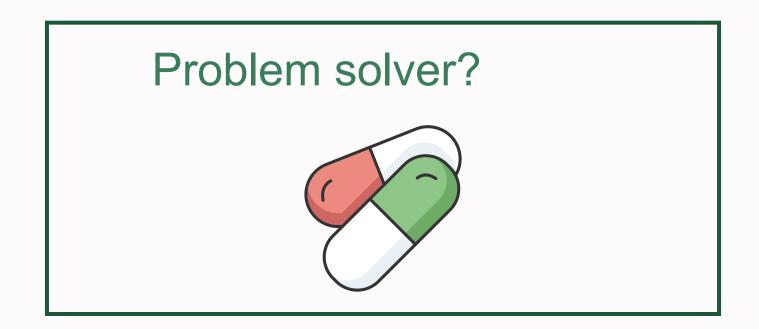
Isabela C. C. Bez , Erwin G. V. Orellana, Angela C. da F. de Oliveira, Kelly M. Monteiro, Saulo H. Weber, Leandro B. Costa

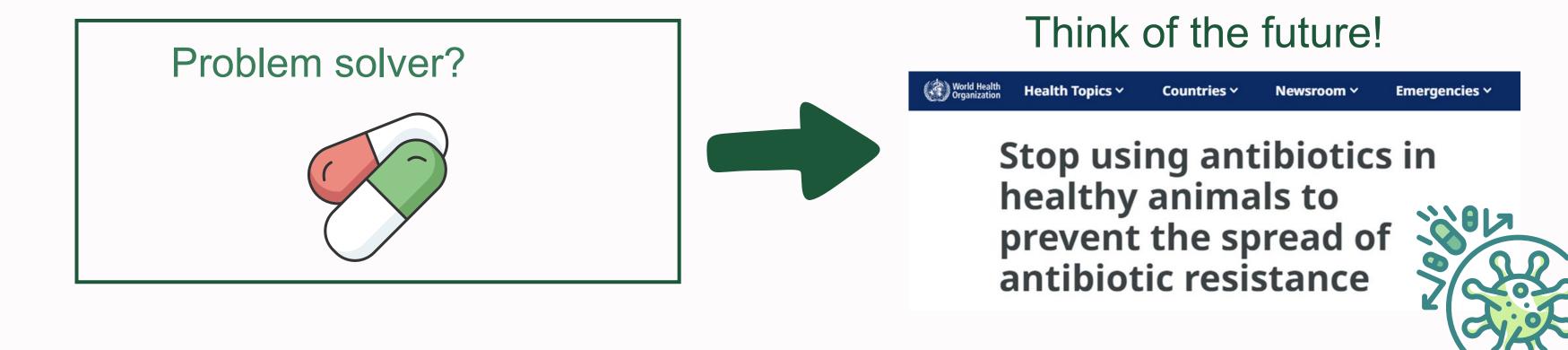
Pontifícia Universidade Católica do Paraná – Graduate Program in Animal Science

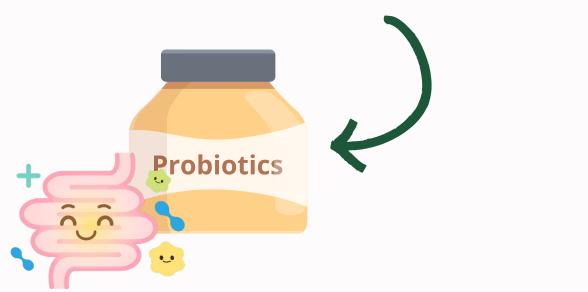



Stressful situations

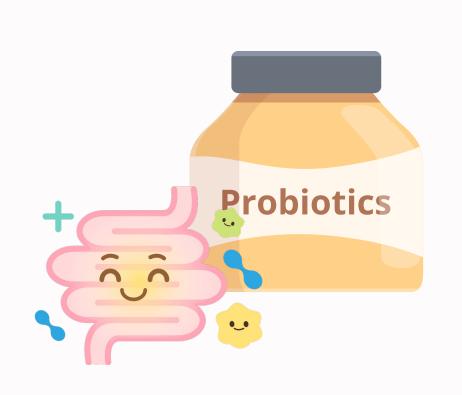
Reduced embrio development


Short lactation


Poor farrowing and weak piglets

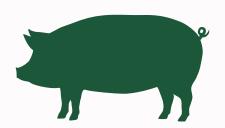

Excessive exposure to glucocorticoids can *alter organ* development during the foetal period

Piglets can present *lower weight, worse gut health and reduced muscle glycogen content*



Companies started to seek solutions and alternatives

Why probiotics?


- Improves colostrum
- Milk quality
- Feed intake during lactation
- Influences performance
- Reduces mortality rate
- Healthy and heavier piglets
- Enhanced animal welfare

Aims

Evaluate the effects of probiotic on sows' gestation performance and piglet's weaning weight

METHODS

47 sows

1-6 farrowings7-12 farrowings

Gestation, farrowing, post-partum and lactation

Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus plantarum

Administered daily

Gestation - 1g/sow/day
Post -partum and lactation - 6g/sow/day

Treatments

CONTROL GROUP

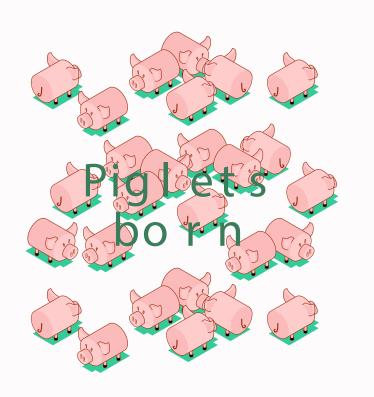
Basal diet without probiotics (11 sows)

Addition of probiotics from the 1st day of gestation and lactational period

Addition of probiotics from the 38th day of gestation and lactational period

Addition of probiotics from the 76th day of gestation and lactational period

12 sows



METHODS

Parameters evaluated

Total number of born, live born, stillborn and crushed piglets

Piglet weight at birth

Probiotic treatment group (PTG)

Half that received 2mL with 0,5g of a new probiotic

Bifidobacterium bifidum and Lactobacillus casei

Control treatment group (CTG)

Half that received water in equal measure as a placebo

METHODS

STATISTICS

Dependent variables → weaning weight

Independent variables → sow treatments, piglet
treatments, farrowing order, days in the maternity
ward, and number of weaned piglets

GESTATION PERFORMANCE

Parameters		n voluo				
Parameters	T1	T2	Т3	T4	p-value	
Total piglets/sow	14.11±2.31	14.12±2.95	15.44±1.06	15.90±1.05	0.8519	
Piglets born alive	12.44±2.29	12.12±2.94	13.11±0.92	14.40±1.83	0.8613	
Stillborn piglets	1.66±2.54	2.00±2.39	2.33±3.12	1.50±1.08	0.7689	
Crushed piglets	1.77±1.56	1.71±2.42	1.37±1.30	1.30±1.15	0.1948	
Piglets weight, kg	1.37±0.21	1.31±0.23	1.32±0.14	1.37±0.15	0.8758	

There was no difference of the probiotic supplementation period on sows' gestational performance

GESTATION PERFORMANCE

Why no effect?

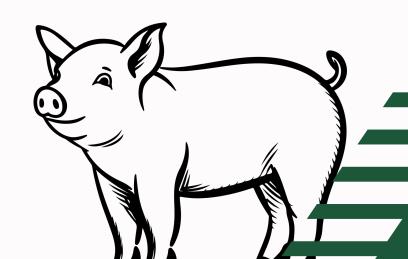
- 1. All sows received the same amounts of feed during the experiment
- 2. The housing environment did not present a sanitary challenge
- 3. Hypothesis ⇒ balance in the sows' intestinal microbiota

GESTATION PERFORMANCE

Managment is important!

The reproductive parameters are within Brazilian farm averages , even for the control treatment

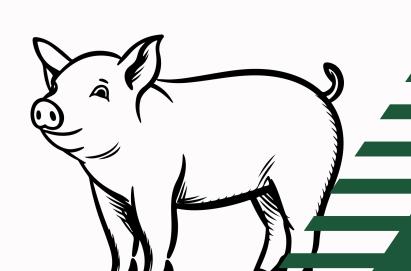
Assistance at birth and good management during farrowing Adequate, calm, and low-stress environment


Hypothesis ⇒ appropriate management & reduced level of stress

PIGLET WEANING WEIGHT

Distatus atus aut	Sow treatment				p-value
Piglet treatment	T1	T2	Т3	T4	
CTG	5.103±0.906 ^{cB}	6.586±0.656 ^{bA}	5.270±0.378 ^{cB}	7.092±0.253ªB	<0.01
PTG	6.541±1.381 ^{bA}	5.881±0.714 ^{cB}	6.453±0.505b ^{cA}	7.579±0.771ª^	<0.01
<i>p</i> -value	<0.01	<0.01	<0.01	<0.01	<0.01

Piglets supplemented or not born from sows supplemented from the last third of gestation a higher average body weight



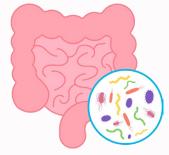
PIGLET WEANING WEIGHT

Piglet treatment	Sow treatment				p-value	
	T1	T2	Т3	T4		
CTG		5.103±0.906 ^{cB}	6.586±0.656 ^{bA}	5.270±0.378 ^{-B}	7.092±0.253ªB	<0.01
PTG		6.541±1.381 ^{bA}	5.881±0.714 ^{cB}	6.453±0.505b ^{cA}	7.579±0.771 ^{aA}	<0.01
<i>p</i> -value		<0.01	<0.01	<0.01	<0.01	<0.01

Piglets supplemented born from supplemented sows increased their body weight

Exception → sows supplemented from insemination to weaning → piglet body weight was reduced

PIGLET WEANING WEIGHT


Sows' healthy microbiota

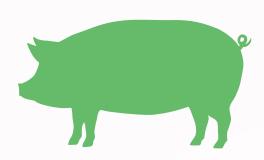
Supplementation at the *end of gestation* \rightarrow enhanced nutrient availability supplied to piglets

Enhanced *milk quality* and quantity

Expected *reduction of potentially pathogenic microorganisms* living in the gut microbiome and *growth of beneficial gut bacteria*

PIGLET WEANING WEIGHT

Probiotic supplementation rocks!


But why the last third?

"Dams can mobilize maternal nutrient reserves to support placental and fetal development when these animals are subjected to a restricted-energy diet"

"Different diets during specific gestation phases *related expressive changes on farrowing rate* when sows were overfed from the last third of gestation"

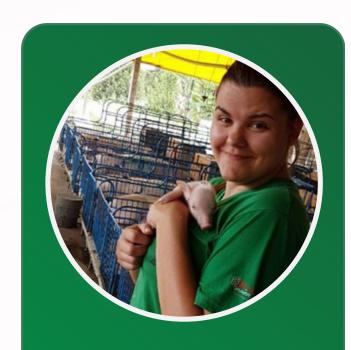
Further research onto probiotics

Supplementing sows from the last third of gestation can increase their litter weight gain until weaning

Probiotic administration during suckling is effective and can improve the performance of piglets

Early supplementation is not interesting in a financial way as its benefits are not evident

Acknowledgements


Leandro B. Costa, PhD


Gregório Murilo, PhD

MonoHub research team

Sows and pigs

References

Betancur C, Martínez Y, Tellez -Isaias G, et al. Effect of Oral Administration with Lactobacillus plantarum CAM6 Strain on Sows during Gestation-Lactation and the Derived Impact on Their Progeny Performance. MediatInflamm 8 (2021).

Campos P H R F, Silva B A N, Donzele J L, et al. Effects of sow nutrition during gestation on within-litter birth weight variation: a review. animal 6, 797-806 (2011).

Einarsson S, Brandt Y, Lundeheim N, et al. Stress and its influence on reproduction in pigs: a review. Acta Vet Scand 50, 48 (2008).

Innamma N, Ngamwongsatit N, Kaeoket K. The effects of using multi-species probiotics in late-pregnant and lactating sows on milk quality and quantity, fecal microflora, and performance of their offspring. Vet World 10, 2055-2062 (2021).

Law K, Johnston L J, Urriola, P E, et al. Maternal Programming of Nursery Pig Performance and Gut Microbiome through Live Yeast Supplementation. Animals. 14, 910 (2024).

Luise D, Spinelli E, Correa F, et al. The effect of a single, early-life administration of a probiotic on piglet growth performance and faecal microbiota until weaning. Ital J Anim Sci 20, 1373-1385 (2021).

References

Mazur - Kuśnirek M, Lipiński K, Jørgensen J N, et al. The Effect of a Bacillus - Based Probiotic on Sow and Piglet Performance in Two Production Cycles. Animals. 13, 3163 (2023).

Menegat M B, DeRouchey J M, Woodworth J C, et al. Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods. J Anim Sci 97, 3920-3937 (2019).

Pereira M M C, Andretta I, Franceschi C H, et al. Effects of Multistrain Probiotic Supplementation on Sows' Emotional and Cognitive States and Progeny Welfare. Animals 14, 847 (2024).

Quesnel H, Père M-C, Louveau I, et al. Sow environment during gestation: part II. Influence on piglet physiology and tissue maturity at birth. animal 13(7), 1440-1447 (2019).

Sun H, de Laguna F B, Wang S, et al. Effect of Saccharomyces cerevisiae boulardii on sows' farrowing duration and reproductive performance, and weanling piglets' performance and IgG concentration. J Anim Sci Technol 64, 10-22 (2022).

Tan C Q, Wei H K, Sun H Q, et al. Effects of supplementing sow diets during two gestations with konjac flour and Saccharomyces boulardii on constipation in peripartal period, lactation feed intake and piglet performance. Anim Feed Sci.Technol 210, 254-262 (2015).

THANK YOU!

Isabela Bez

is a be la.be z@puc pr.edu.br@lsabelaBez_

MonoHub

LinkedIn

