

E-mail contact: Dr Monika Hejna m.hejna@igbzpan.pl

Algal-based extracts and their mixes: ability to perform antimicrobial and antioxidant activities

Monika Hejna^{1*}, Matteo Dell'Anno², Luciana Rossi², Artur Jóźwik¹

Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland.
 Department of Animal Science, University of California, 4302 Meyer Hall,
 One Shields Ave, Davis, CA 95616, USA.

³ Department of Veterinary Medicine and Animal Sciences – DIVAS, Università degli Studi di Milano, via dell'Università 6, Lodi, Italy.

ANTIBIOTICS AS GROWTH PROMOTING AGENTS AND ANTIMICROBIAL RESISTANCE AS GLOBAL THREAT

PASIFIC

Reducing antibiotic use in animal production decreased the prevalence of antibiotic-resistant bacteria in animals about 15% and multidrug-resistant

bacteria about 24-32%.

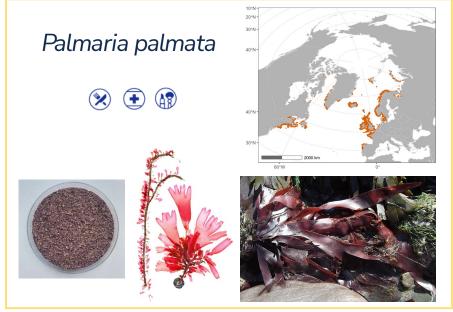
www.efsa. europa.eu/it/ interactivepages/ antimicrobialresistance Denmark's actions to stop using antibiotics as growth promoters (AGP) in Growth promotion livestock has reduced antibiotic consumption but not pig production. Disease treatment No sales profit for vets. Avoparcin banned. Virginiamycin banned. 100 No AGP in older pigs. 'Yellow card' scheme began No AGP in piglets. 2002

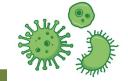
Fig. 1. Consumption of antimicrobials for use as AGPs (viola bars) or for therapeutic administration (blue bars) in Danish swine farms. *Aarestrup et al. (2012)

* Tang et al., WHO (2017).

INTRODUCTION

SEAWEEDS AS ANTIBIOTIC ALTERNATIVES



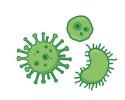

ALGAE AS ALTERNATIVES

ANTIBACTERIAL PROPERTIES

AN, PP and ANPP

EXPERIMENT I

ANTIOXIDANT PROPERTIES



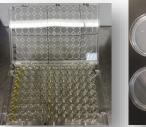
AN, PP and ANPP

EXPERIMENT II

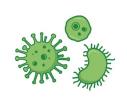
SEAWEEDS – HOW THEY INFLUENCE ON BACTERIA GROWTH

The aim of the study was to test the selected algae extracts and their mixes and their inhibitory activity against ETEC and VTEC *Escherichia coli* strains (F4+ and F18+) through liquid culture of *Escherichia coli*.

ALGAL


EXTRACTS

Escherichia coli

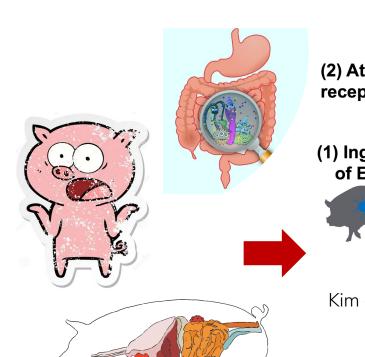


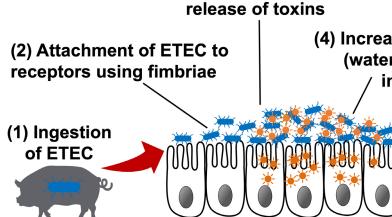
Influence on growth inhibition

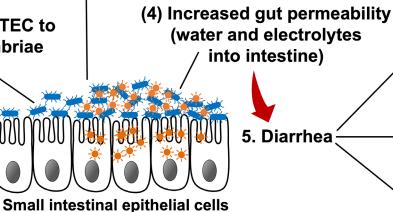
AN, PP and ANPP

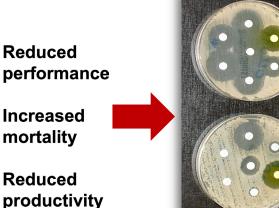
SEAWEEDS - HOW THEY INFLUENCE ON **BACTERIA GROWTH**

(3) Colonization and



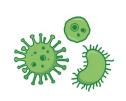

WEANING STRESS


BACTERIAL INFECTIONS


=ETEC with fimbriae

ANTIBIOTHERAPY

Kim et al. 2022.



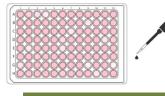
Escherichia coli F4+ F18+

SEAWEEDS - HOW THEY INFLUENCE ON **BACTERIA GROWTH**

A liquid culture-based Escherichia coli F4+ and F18+ was supplemented with seaweeds extracts and their mixes with an experimental design:

2 (with or without *E. coli*) × 2 (F4+ and F18+) × 5 doses (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL of seaweed extracts).

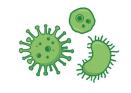
ALGAE POWDERS EXTRACTION PROCESS



12h grown at 37°C with shaking $(150 \times \text{rpm})$ in lysogeny broth (LB)

Inoculation of different EC in 96wells with doses of seaweeds

In 60-mins intervals



Data were analyzed (SAS 9.4)

SEAWEEDS - HOW THEY INFLUENCE ON **BACTERIA GROWTH**

AN species dose-dependently significantly inhibited (p<0.05) the growth of ETEC F4+ in vitro in all-time points.

- PP significanlty inhibited the growth in the highest dose in both T1, T2.
- ANPP did not inhibit ETEC F4+ growth.

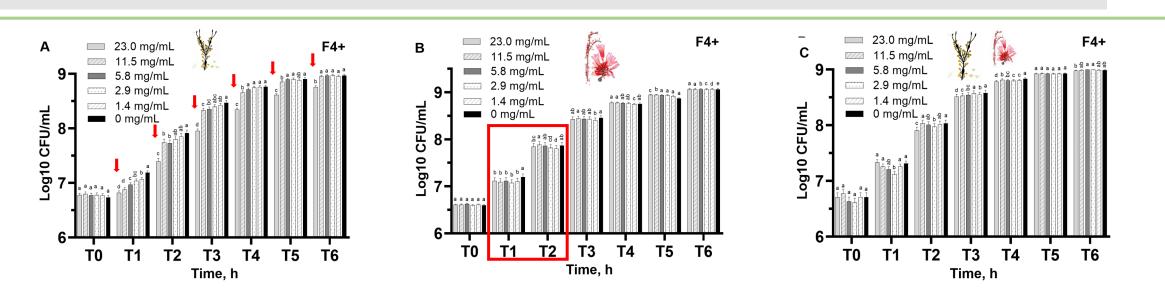
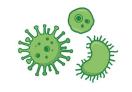
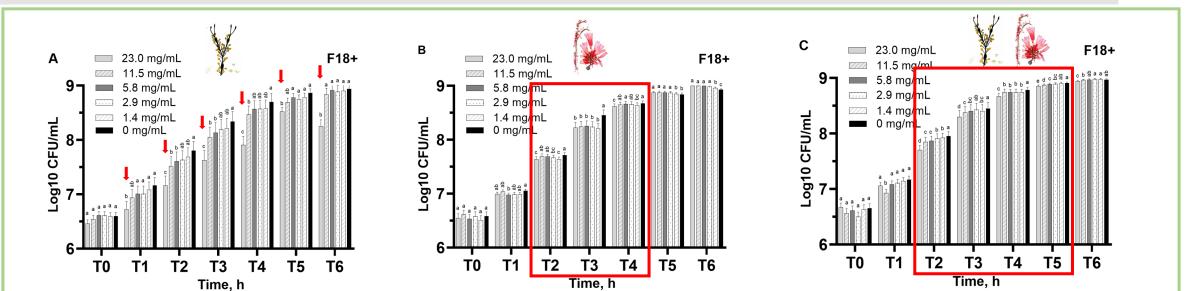



Fig. 2. The impact of different concentrations (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL) of AN (A), PP (B) and ANPP (C) on Escherichia coli F4+ growth in 60-min time interval points (T0, T1, T2, T3, T4, T5, T6). Data are expressed as $log 10 CFU/mL LSMEAN \pm SEM (n = 3)$. Different superscript letters express significant differences at p < 0.05 among different concentrations within the same time point.

SEAWEEDS – HOW THEY INFLUENCE ON BACTERIA GROWTH



• AN species also dose-dependently **significantly inhibited** (p<0.05) the growth of VTEC F18+ *in vitro*, with the strongest response of **highest dose**.

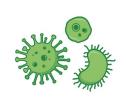
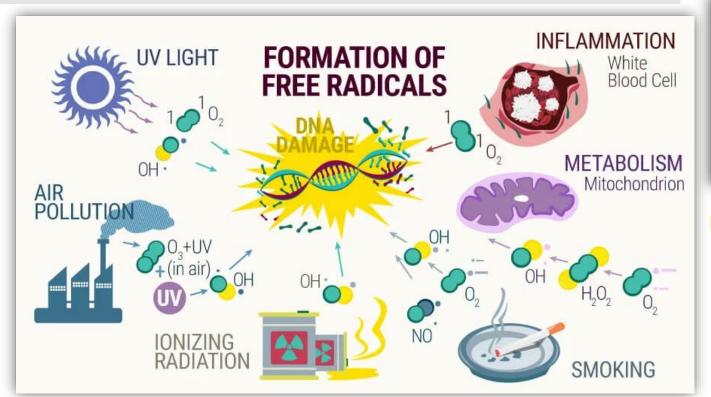

- PP significantly inhibited the growth in T2, T3 and T4.
- ANPP also inhibited the VTEC F18+ growth starting from T2.

Fig. 3. The impact of different concentrations (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL) of AN (A), PP (B) and ANPP (C) on Escherichia coli F18+ growth in 60-min time interval points (T0, T1, T2, T3, T4, T5, T6). Data are expressed as $\log 10 \text{ CFU/mL LSMEAN} \pm \text{SEM}$ (n = 3). Different superscript letters express significant differences at p < 0.05 among different concentrations within the same time point.

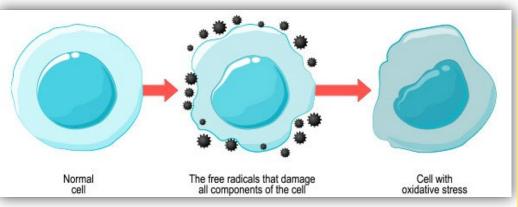
SEAWEEDS – HOW THEY INFLUENCE ON BACTERIA GROWTH

In this study, the brown macroalgae *Ascophyllum nodosum extracts were the most effective* in terms of inhibition of both strains of *Escherichia coli*, thus may posses **strong antibacterial activity**.

The aim of this study was to **test the antioxidant activity** of seaweeds extracts through two chemical-based assays.



SEAWEEDS – HOW THEY AFFECT THE OXIDATIVE STRESS

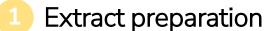


FREE RADICALS FORMATION

Rajendran et al. 2013

OXIDATIVE STRESS

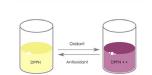
ANTIOXIDANT PROPERTIES



EXPERIMENTAL DESIGN

Seaweeds extracts were tested with:

3 extracts (AN, PP and 1:1 ANPP) × 5 doses (0, 1, 50, 200, 500, 600 mg/mL).



Extraction of the powders

method Incubate 30-mins in the dark

> Add 3.9 mL of DPPH solution

Add 100 µL/well of solution (in 96-well plates)

ABSORBANCE MEASUREMENT

Data were analyzed (SAS 9.4)

RPA method

DPPH

Add:

2.5 mL 1% potassium ferricyanide, 2.5 mL 10% trichloroacetic acid. 0.5 mL 0.1% ferric chloride.

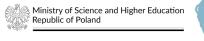
Incubate mixture at 50°C

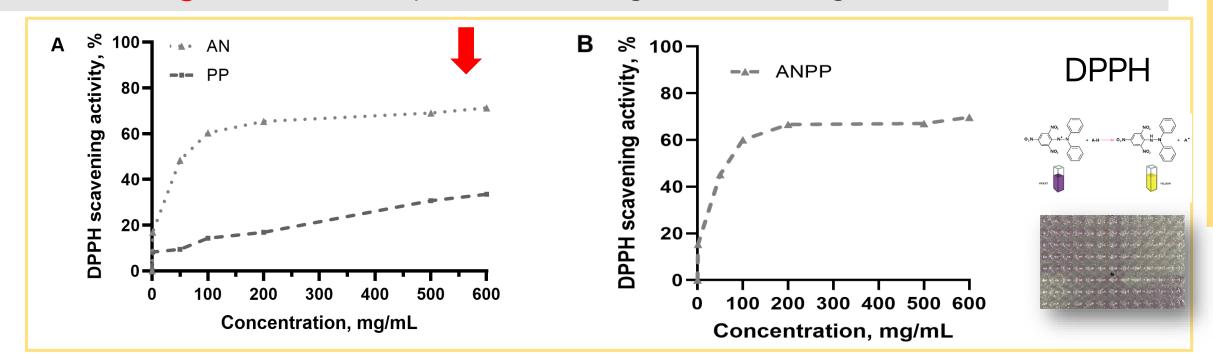
for 20. minutes

Add 100 µL/well in a transparent 96-well plate

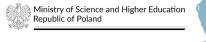
METHODOLOGY

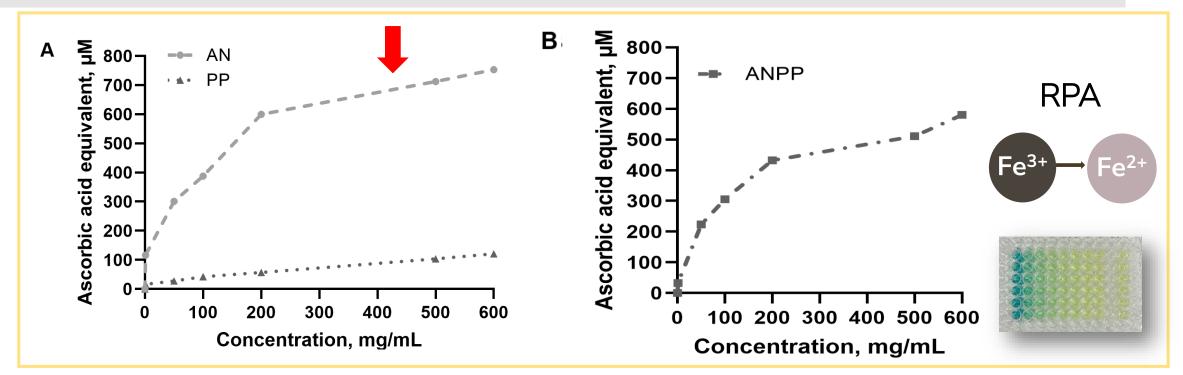
ANTIOXIDANT PROPERTIES





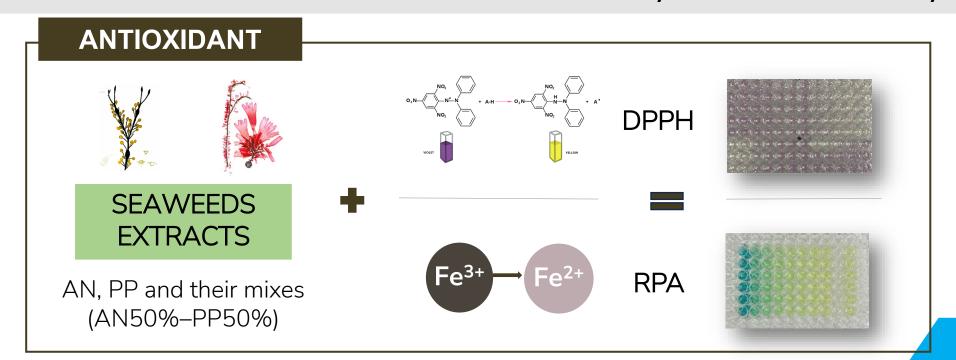
 Brown seaweed AN, and its extract mixes (ANPP) demonstrated the highest dose response starting from 50 mg/mL.


Fig. 4. Dose response of (A) *Ascophyllum nodosum* (AN) and *Palmaria palmata* (PP) algae species and their 1:1 extract mixes (B) using the 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Data are presented as the mean of 5 observations.



 Brown seaweed AN, and its extract mixes (ANPP) also demonstrated the highest dose-response.

Fig. 5. Dose response of (A): Ascophyllum nodosum (AN) and Palmaria palmata (PP) algae species and (B): their 1:1 extract mixes using reducing power assay. Data are presented as the mean of 5 observations.



In this study, the brown macroalgae *Ascophyllum* nodosum extract and their mixes extracts were the most effective in terms of antioxidant activity in both assays.

SEAWEED - TAKE HOME MESSAGE

Between animal and human medicine there are no dividing lines—nor should there be.

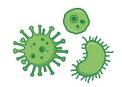
Rudolf Virchow, 1856

www.cdc.gov/onehealth.

SUSTAINABILITY

CONCLUSION

PLANET


ENVIRONMENT

* EFSA (2017).

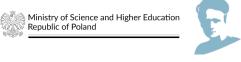
* ONZ, the 2030 Agenda for Sustainable Development (2015).

SEAWEEDS – TAKE HOME MESSAGE

Tested seaweed extracts, particularly from *Ascophyllum* nodosum, showed strong antioxidative activity, suggesting they may reduce oxidative stress.

Tested algae, **especially AN**, were able to significantly decrease the *Escherichia coli* growth. Thus, these seaweed extracts are able to **serve** as antibacterial agents.

These seaweeds could play a key role in the development of new **functional nutritional strategies** to reduce antibiotic overuse in swine farming, and **enhance sustainability**.



The sustainable development of livestock is a key.

ACKNOWLEDGMENTS

scientific reports

Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts

Monika Hejna ^{1*}, Matteo Dell'Anno ², Yanhong Liu ³, Luciana Rossi ², Anna Aksmann ⁴, Grzegorz Pogorzelski ¹, Artur Jóźwik ¹

- ¹ Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- ² Department of Veterinary Medicine and Animal Sciences DIVAS, Università degli Studi di Milano, dell'Università 6, 26900 Lodi, Italy.
- ³ Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave, Davis, 95616, CA, United States.
- ⁴ Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No 847639 and from the Polish Ministry of Education and Science.

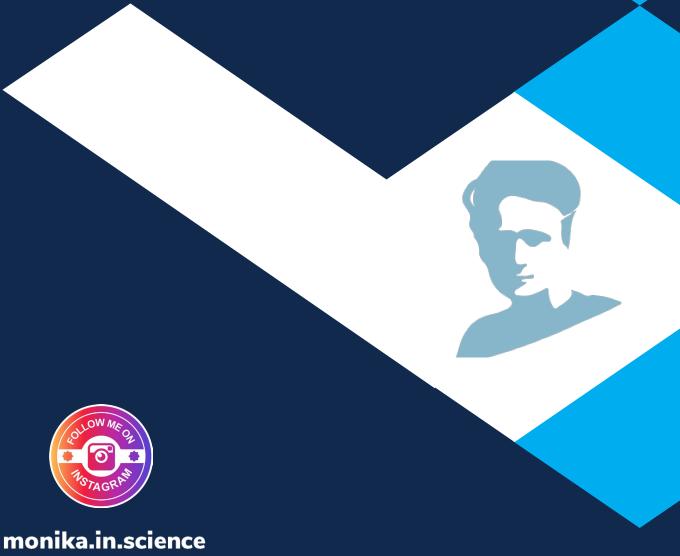
INSTITUTE OF GENETICS
AND ANIMAL BIOTECHNOLOGY
of the Polish Academy of Sciences

Prof. Artur Jóźwik

Dr Matteo Dell'Anno

Prof. Luciana Rossi

THANK YOU FOR YOUR ATTENTION!


This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Maria Skłodowska-Curie grant agreement No 847639.

Maria Skłodowska-Curie Actions

